首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO x . This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO x emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO x and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO x emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations.  相似文献   

2.
Growth in subsonic air traffic over the past 20 years has been dramatic, with an annual increase of }6.1% over the decade between 1978 and 1988. Furthermore, aircraft activities in the year 2000 are predicted to be double those of 1990, with a shift towards more high-flying, longhaul subsonics. Aircraft exhaust gases increase the amount of nitrogen oxides (NO x ) in the upper troposphere/lower stratosphere through injection at cruise altitudes. Given that NO x is instrumental in tropospheric ozone production and stratospheric ozone destruction, it is important to determine the influence of subsonic aircraft NO x emissions on levels of atmospheric ozone. This paper describes calculations designed to investigate the impact that subsonic aircraft may already have had on the atmosphere during the 1980s, run in a 2-D chemical-radiative-transport model. The results indicate a significant increase in upper tropospheric ozone over the decade arising from aircraft emissions. However, when comparing model results with observational data, certain discrepancies appear. Lower stratospheric ozone loss over the 1980s does not appear to be greatly altered by the inclusion of aircraft emissions in the model. However, given the trend in greater numbers of long-haul subsonic aircraft, this factor must be considered in any further calculations.  相似文献   

3.
Emission inventories of NOx, CO, and individual volatile organic compounds (VOC), highly resolved in space and time, belong to the most important input parameters for chemistry and transport models (CTM) used for ozone prediction. Because of the decisive influence of the input quality on the outcome of CTM simulations, the quality of emission inventories has to be assessed. This paper presents an experimental evaluation of the highly resolved emission inventories for the city of Augsburg. The emissions of the city, determined in March and October 1998 using mass balance and tracer techniques, and derived from the measured receptor concentration ratios, were compared with emissions modeled from an emission inventory. The modeled CO emissions were in agreement with the measured ones within the combined experimental and model uncertainties. More detailed CO emission model simulations suggest that the tendency of calculated CO emissions being smaller than the measured ones may be due to higher traffic activity in Augsburg. Modeled NOx emissions were in agreement with the measured ones within the combined experimental and model uncertainties. Large deviations between modeled and measured values have been found for some individual NMHC compounds. The measured NMHC emission fingerprints were dominated by mobile sources. Substantial model predicted NMHC emissions from the solvent use could not be detected by measurements suggesting that they may not be correctly represented by the emission model.  相似文献   

4.
Abstract

The dependence of ozone formation on the mixing ratios of volatile organic compounds (VOCs) and nitrogen oxides (NOx) has been widely studied. In addition to the atmospheric levels of VOCs and NOx, the extent of photochemical processing of VOCs has a strong impact on ozone levels. Although methods for measuring atmospheric mixing ratios of VOCs and NOx are well established and results of those measurements are widely available, determination of the extent of photochemical processing of VOCs, known as photochemical age (PCA), is difficult. In this article a recently developed methodology for the determination of PCA for individual compounds based on the change in their stable carbon isotope composition is used to investigate the dependence between ozone and VOC or NOx mixing ratios at a rural site in Ontario, Canada, during fall and winter. The results show that under these conditions the variability in VOC mixing ratios is predominantly a result of the varying impact of local emissions and not a result of changes in the extent of atmospheric processing. This explains why the mixing ratio of ozone shows no systematic dependence on the mixing ratios of VOCs or NOx in this environment and at this time of the year.  相似文献   

5.
The fluxes of ozone and NOx out of the atmospheric boundary layer (ABL) over Europe are calculated in a mesoscale chemical transport model (MCT) and compared with the net chemical production or destruction of ozone and the emissions of precursors within the ABL for two 10 days' periods which had quite different synoptic situations and levels of photochemical activity (1–10 July 1991 (JUL91) and 26 October–4 November 1994 (ON94)). Over the European continent, about 8% of the NOx emissions were brought from the ABL to the free troposphere as NOx, while about 15% of the NOx emissions were brought to the free troposphere as NOy–NOx, i.e. as PAN or HNO3. The convection dominates over the synoptic scale vertical advection as a transport mechanism both for NOx and NOy out of the boundary layer in the summertime high pressure situation (JUL91), while in the fall situation (ON94) the convective part was calculated to be the smallest. NOx was almost completely transformed to NOy–NOx or removed within the ABL. Also for NOy the major part of the atmospheric cycle is confined to the ABL both for JUL91 and ON94. The vertical transport time out of the ABL is of the order of 100h both for the total model domain and over the European continent. The net convective exchange of ozone from the ABL is not a dominant process for the amount of ozone in the ABL averaged over 10 days and the whole domain, but convection reduces the maximum ozone concentration in episodes significantly. The ozone producing efficiency of NOx is calculated to increase with height to typically 15–20 in the upper half of the troposphere from around 5 in the ABL, but in the middle free troposphere the concentration of NOx is often too low to cause net chemical formation of ozone there.  相似文献   

6.
7.
Several years of continuous measurements of surfaceozone at Norwegian monitoring sites are studied in aclimatological way. The monitoring sites are at rurallocations extending from 58°N, a few hundredkilometers from the European continent and into theArctic at 79°N. The ozone observations are sorted intoclasses of integrated NOx emissions along 96 h backtrajectories. The average seasonal cycles of ozone areestimated for each class separately. The differencesindicate the change from the background air due toanthropogenic emissions. The average seasonal cycle ofozone in the cleanest air masses showed a maximum inspring and a minimum during summer and autumn at allsites, but the spring maximum was more pronounced atthe southernmost locations. Polluted air masses showedan ozone deficit during winter and a surplus duringsummer. The deviation from the background was clearlylinked to the integrated NOx emission along thetrajectories. In summer the calculations indicate thatthe number of ozone molecules formed per NOx moleculedrops with increasing emissions. The average seasonalcycle of ozone at Birkenes for different transportsectors indicate that the most pronounced ozoneformation takes place in air masses from E-Europe/Russia.  相似文献   

8.
Understanding the chemical links between ozone (O3) and its two main precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), is important for designing effective photochemical smog reduction strategies. This chemical relationship will determine which precursor (NOx or VOC) emission reduction will be more effective for decreasing the ozone formation. Under certain conditions, ozone levels decrease as a result of a reduction in NOx emissions but do not respond significantly to changes in VOC emissions (NOx-sensitive condition), while under other conditions ozone concentrations decrease in response to reductions in VOCs and may even increase when NOx emissions are reduced (VOC-sensitive conditions). Indicator species can be used to assess the sensitivity of ozone to changes in the emissions of its precursors. These indicators are species or species ratios involved in ozone photochemistry which reflect the primary chemical process through which the ozone was formed. In this work we use the MM5-CAMx model system to explore the behaviour of various indicator species during two meteorological situations featuring different atmospheric conditions in a complex terrain area. The results show that indicators based on nitrogen compounds (i.e,. NOy and NOz) are suitable for defining the transition range from VOC- to NOx-sensitive chemistry, and that despite the uncertainties associated with the use of chemical indicators, the ratios O3/NOy and O3/NOz may provide a simple and useful way to summarize the response of ozone to changes in NOx and VOC emissions in Southwestern Spain.  相似文献   

9.
The objectives of this study were to identify species and levels of volatile organic compounds (VOCs), and determine their oxidation capacity in the rural atmosphere of western Senegal. A field study was conducted to obtain air samples during September 14 and September 15, 2006 for analyses of VOCs. Methanol, acetone, and acetaldehyde were the most abundant detected chemical species and their maximum mixing ratios reached 6 parts per billion on a volume basis (ppbv). Local emission sources such as firewood and charcoal burning strongly influenced VOC concentrations. The VOC concentrations exhibited little temporal variations due to the low reactivity with hydroxyl radicals, with reactivity values ranging from 0.001 to 2.6 s−1. The conditions in this rural site were rather clean. Low ambient NO x levels limited ozone production. Nitrogen oxide (NO x ) levels reached values less than 2 ppbv and maximum VOC/NO x ratios reached 60 ppbvC/ppbv, with an overall average of 2.4 ± 4.5 ppbvC/ppbv. This indicates that the rural western Senegal region is NO x limited in terms of oxidant formation potential. Therefore, during the study period photochemical ozone production became limited due to low ambient NO x levels. The estimated ozone formation reactivity for VOCs was low and ranged between −5.5 mol of ozone/mol of benzaldehyde to 0.6 mol/mol of anthropogenic dienes.  相似文献   

10.
A Eulerian air pollution model for Europe with nonlinear chemistry   总被引:1,自引:0,他引:1  
A long-range transport model with nonlinear chemical reactions is described. The model contains 35 pollutants and 70 chemical reactions. This is a Eulerian model defined on a space domain containing the whole of Europe. The spherical space domain (corresponding to the Earth's surface covered by the model) is mapped into a square plane domain and discretized by using a 32×32 grid. The grid increments are equidistant (both along the Ox axis and along the Oy axis). The choice of values of the physical parameters involved in the model and the numerical treatment of the model are shortly discussed. The model is tested with meteorological data for 1985 and 1989. The numerical results are compared with measurements at stations located in different European countries. Extensive comparisons of ozone concentrations for July 1985 with measurements taken at 24 European stations are also carried out. Results concerning three episodes in July 1985 as well as results obtained in the study of the sensitivity of the ozone concentrations to variations of NO x and/or anthropogenic VOC emissions are presented. The advantages and the limitations of such a model are discussed. The model is continuously improved by adding new modules to it. The plans for improvements in the near future are outlined.  相似文献   

11.
Three online coupled chemical transport model simulations were analyzed for three summer months of 2015 in Poland. One of them was run with default emission inventory, the other two with NOx and VOC emissions reduced by 30%, respectively. Obtained ozone concentrations were evaluated with data from air quality measurement stations and ozone sensitivity to precursor emissions was estimated by ozone concentration differences between simulations and with the use of indicator ratios. They were calculated based on modeled mixing ratios of ozone, total reactive nitrogen and its components, nitric acid and hydrogen peroxide. The results show that the model overestimates ozone concentrations with the largest errors in the morning and evening, which is primarily related to the way vertical mixing is resolved by the model. Better model performance for ozone is achieved in rural than urban environment, as PBL and mixing mechanisms play more significant role in urban areas. Modeled ozone shows mixed sensitivity to precursor concentrations, similarly to other European regions, but indicator ratios have different values than are found in literature, particularly H2O2/HNO3 is larger than in southern Europe. However, indicator ratios often differ between locations and transition values need to be established individually for a given region.  相似文献   

12.
传统的空气质量模型多使用简化的光化学反应机制来模拟大气污染物的形成.这些机制主要基于烟雾箱实验拟合的反应速率和产物来模拟二次产物(如臭氧(O3))前体物的氧化反应,具有一定的不确定性,导致模拟结果产生偏差.针对该问题,本研究将详细的大气化学机理(MCMv3.3.1)与美国国家环境保护局研制的第三代空气质量预报和评估系统CMAQ相结合(CMAQ-MCM),模拟研究长三角地区2015年8月27—9月5日臭氧高发时段的空气质量.CMAQ-MCM模型可以较好地模拟长三角地区6个代表城市O3和其前体物随时间的变化趋势.对模拟的O3日最大8 h平均浓度的统计分析表明,徐州表现最好(标准平均误差=-0.15,标准平均偏差=0.23).在长三角地区,居民源对挥发性有机物(VOCs)的贡献最大,占39.08%,其次是交通运输(33.25%)和工业(25.56%).能源对总VOCs的贡献最小,约为2.11%.对活性氧化氮(NOy)的分析表明,其主要组分是NOx(80%),其次是硝酸(HNO3)(<10%).O3的空间分布与NOy和NOx非常相似.HCHO等其他氧化产物的分布与NOx相似,这很可能是由于在高NOx条件下VOCs氧化产生的产物.甲基乙烯基酮(MVK)和甲基丙烯醛(MACR)的空间分布与自然源VOCs (BVOCs)非常相似,表明长三角地区MVK和MACR主要由BVOCs氧化生成.长三角地区受到人为源和自然源排放相互作用的影响.  相似文献   

13.
Satellite measurements of tropospheric column O3 and NO2 in eastern and southeastern Asia are analyzed to study the spatial and seasonal characteristics of pollution in these regions. Tropospheric column O3 is derived from differential measurements of total column ozone from Total Ozone Mapping Spectrometer (TOMS), and stratospheric column ozone from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS). The tropospheric column NO2 is measured by Global Ozone Monitoring Experiment (GOME). A global chemical and transport model (Model of Ozone and Related Chemical Tracers, version 2; MOZART-2) is applied to analyze and interpret the satellite measurements. The study, which is based on spring, summer, and fall months of 1997 shows generally good agreement between the model and satellite data with respect to seasonal and spatial characteristics of O3 and NO2 fields. The analysis of the model results show that the industrial emission of NOx (NO + NO2) contributes about 50%–80% to tropospheric column NO2 in eastern Asia and about 20%–50% in southeastern Asia. The contribution of industrial emission of NOx to tropospheric column O3 ranges from 10% to 30% in eastern Asia. Biomass burning and lightning NOx emissions have a small effect on tropospheric O3 in central and eastern Asia, but they have a significant impact in southeastern Asia. The varying effects of NOx on tropospheric column ozone are attributed to differences in relative abundance of volatile organic compounds (VOCs) with respect to total nitrogen in the two regions.  相似文献   

14.
利用臭氧探空资料,分析了西太平洋地区香港(Hong Kong)、那霸(Naha)和札幌(Sapporo)三个站点2000~2010年期间大气边界层内臭氧(O3)的季节分布和年变化趋势。结果表明,三个站点O3的季节分布存在明显的差异。其中,那霸和香港大气边界层内O3季节平均呈双峰值分布,其峰值分别出现在春季和秋季;而札幌站为单峰分布,峰值出现在春季。造成季节分布差异的主要原因包括人为污染源和自然因素如气象条件。另外,三个站点大气边界层内O3均呈上升趋势。其中札幌、那霸上升最快,分别达0.80 ppb a-1和0.77 ppb a-1。(ppb表示10-9,下同)香港的年际增长较不明显,但秋季增长却非常明显,高达1.21 ppb a-1。结合GOME (Global Ozone Monitoring Experiment) 和SCIAMACHY (Scanning Imaging Absorption Spectro Meter for Atmospheric Chartography)卫星反演的NO2数据发现,过去10年中国京津唐和东北地区的对流层内NO2柱总量增加极为迅速。这些O3前体物通过远距离输送是导致札幌、那霸O3浓度增加的主要原因之一。珠江三角洲人为污染源的增加及偏北气流的影响,是导致香港地区秋季O3增加的主要原因。  相似文献   

15.
Simultaneous observations of surface ozone (O3) with its precursors namely, carbon monoxide (CO) and oxides of nitrogen (NOx) have been taken on diurnal scale from a tropical semi-urban site, Pune (18.54°N, 73.81°E) in India. We present the data for one year (2003–2004) period to study the salient features of these trace gases. The peak in amplitude of ozone is found during the noontime whereas in CO and NOX it is observed in the morning hours between 0800 and 0900 H. The concentration of these pollutants drop down considerably during southwest monsoon months and the diurnal pattern also become very weak. The diurnal trends of these gases are found to be different for different seasons, which are specific to the receptor site. Model simulations using 3-D chemical-transport model with regional emission inventories and observed winds have also been carried out. The comparison of model results with observations, on seasonal basis yielded a reasonable qualitative agreement. The relative role of local emissions and long range transport in the diurnal pattern for different seasons has been outlined, which reveals that the ozone is highly influenced by regional/long range transport in this region. The effect of precursor amounts in the morning on afternoon ozone peak levels has been investigated using the lag correlation study, which reveals that a time lag of 5–7 h is required for most of these precursor gases to photo-chemically produce ozone to its maximum potential. Results are discussed in the light of available topographic and meteorological conditions.  相似文献   

16.
A combination of linear response models is used to estimate the transient changes in the global means of carbon dioxide (CO2) concentration, surface temperature, and sea level due to aviation. Apart from CO2, the forcing caused by ozone (O3) changes due to nitrogen oxide (NOx) emissions from aircraft is also considered. The model is applied to aviation using several CO2 emissions scenarios, based on reported fuel consumption in the past and scenarios for the future, and corresponding NOx emissions. Aviation CO2 emissions from the past until 1995 enlarged the atmospheric CO2 concentration by 1.4 ppmv (1.7% of the anthropogenic CO2 increase since 1800). By 1995, the global mean surface temperature had increased by about 0.004 K, and the sea level had risen by 0.045 cm. In one scenario (Fa1), which assumes a threefold increase in aviation fuel consumption until 2050 and an annual increase rate of 1% thereafter until 2100, the model predicts a CO2 concentration change of 13 ppmv by 2100, causing temperature increases of 0.01, 0.025, 0.05 K and sea level increases of 0.1, 0.3, and 0.5 cm in the years 2015, 2050, and 2100, respectively. For other recently published scenarios, the results range from 5 to 17 ppmv for CO2 concentration increase in the year 2050, and 0.02 to 0.05 K for temperature increase. Under the assumption that present-day aircraft-induced O3 changes cause an equilibrium surface warming of 0.05 K, the transient responses amount to 0.03 K in surface temperature for scenario Fa1 in 1995. The radiative forcing due to an aircraft-induced O3 increase causes a larger temperature change than aircraft CO2 forcing. Also, climate reacts more promptly to changes in O3 than to changes in CO2 emissions from aviation. Finally, even under the assumption of a rather small equilibrium temperature change from aircraft-induced O3 (0.01 K for the 1992 NOx emissions), a proposed new combustor technology which reduces specific NOx emissions will cause a smaller temperature change during the next century than the standard technology does, despite a slightly enhanced fuel consumption. Regional effects are not considered here, but may be larger than the global mean responses.  相似文献   

17.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

18.
A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined greenhouse effect of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.  相似文献   

19.
Lightning is thought to represent an important source of tropospheric reactive nitrogen species NOx (NO + NO2),but estimates of global production of NOx by lightning varyconsiderably. We evaluate the production of NOx by lightning using a global chemical/transport model, satellite lightning observations, and airborne NOx measurements. Various model calculations are conducted toassess the global NOx production rate of lightning by comparing the model calculations with airborne measurements. The results show that the simulated NOx in the tropical middle and upper troposphere are very sensitiveto the amount and altitude of the lightning NOx used in the model. A global lightning NOx production of 7 Tg N yr–1uniformly distributed in convective clouds or 3.5 Tg N yr–1 distributedin the upper cloud regions produces good agreement between calculated and measured NOx concentrations in the tropics.  相似文献   

20.
Measurements and model developments with the objective to improve the quality and resolution of estimations of anthropogenic emissions are described. Measurement results on a chassis dynamometer were used to determine VOC profiles for exhaust gas emissions of passenger cars for different vehicle and fuel types and different driving modes. Further measurements resulted in emission factors and VOC profiles for lignite burning in residential stoves. Using remote sensing techniques benzene emission factors of gas stations and the efficiency of gasoline vapour recovery systems were measured.To improve the quality and the spatial and temporal resolution of emission data, emission models were improved or modified. This was done by elaborating and applying new methods for important emission source categories (e.g., solvent use, road traffic, small combustion) as well as including new data sources in the calculation routines (e.g. emission statements, land use data, import/export indices of solvents). Simultaneously considerable progress was made improving temporal and spatial allocation functions and VOC profiles. With these improvements a large number of anthropogenic emission data sets for 14 different grid projections in Germany and Europe have been generated. An emission scenario for Germany for 2010 suggests that considering air quality directives from the EU and Germany which are in force or in pipeline, German emissions of VOC and NOx will decrease, but still exceed the national emission ceilings of the EU-NEC directive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号