首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   

3.
Ashley A. Webb 《水文研究》2009,23(12):1679-1689
Streamflows were measured in two Pinus radiata plantation catchments and one native eucalypt forest catchment in Canobolas State forest from 1999 to 2007. In 2002/2003, clearfall harvesting of 43·2 and 40·3% of two plantation catchments occurred, respectively. Water yields increased by 54 mm (52%), 71 mm (35%) and 50 mm (19%) in the first three years post‐harvest in treated catchment A and by 103 mm (118%), 157 mm (82%) and 119 mm (48%) in treated catchment B relative to the native forest control catchment. In the fourth post‐harvest water year annual rainfall was only 488 mm, which resulted in negligible run‐off in all catchments, regardless of forest cover. In both plantation catchments, monthly streamflows increased significantly (p = 0·01, p < 0·001) due to a significant increase in baseflows (p < 0·001) after harvesting. Monthly stormflows were not significantly affected by harvesting. Flow duration curve analyses indicated a variable response between the two plantation catchments. Treated catchment A was converted from an ephemeral stream flowing 42% of the time pre‐harvest to a temporary stream flowing 82% of the time post‐harvest. These changes occurred throughout all seasons of the year but were most pronounced during summer and autumn when baseflows were maintained post‐harvest but were not observed under native forest or mature pine plantations. By contrast, flow duration increased in treated catchment B from 12% of the time pre‐harvest to 38% of the time post‐harvest with the greatest changes measured during the winter and spring months when streamflow would normally occur under native forest conditions. These observations have important implications for the development of models of plantation water use to be utilized in water resource planning in Australia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Our aim was to quantify the effects of forest plantation and management (clear cut or 30% partial harvest) in relation to pasture, on catchment discharge in southeast Rio Grande do Sul state, Brazil. A paired‐catchment approach was implemented in two regions (Eldorado do Sul and São Gabriel municipalities) where discharge was measured for 4 years at three catchments in each region, two of which were predominantly eucalypt plantation (mainly Eucalyptus saligna, rotation of approximately 7–9 years) with native forest and grass in streamside zones. The third catchment was covered with grazed pasture. Weather, soils, canopy interception, groundwater level, tree growth, and leaf area index were also measured. The 3‐PG process‐based forest productivity model was adapted to predict spatial daily plantation and pasture water balance including precipitation interception, soil evaporation, transpiration, soil moisture, drainage, discharge, and monthly plantation growth. The TOPMODEL framework was used to simulate water pools and fluxes in the catchments. Discharge was higher under pasture than pre‐harvesting plantation and increased for 1–2 years after complete plantation harvest; this change was less pronounced in the catchments under partial harvest. The ratio of discharge to precipitation before harvesting varied from 7% to 13% in the eucalypt catchments and 28% to 29% under pasture. The ratio increases to 23–24% after total harvest, and to 17% after partial harvesting. The ratio under pasture also increases during this period (to 32–44%) owing to increased precipitation. The baseflow, in relation to total discharge, varied from 28% to 62% under Eucalyptus and from 38% to 43% in the pasture catchments. Hence, eucalypt plantations in these regions can be expected to influence discharge regimes when compared with pasture land use, and modelling suggests that partial harvesting would moderate the magnitude of discharge variation compared with a full catchment plantation harvesting. The model efficiency coefficient (Nash–Sutcliffe model efficiency coefficient) varied from 0.665 to 0.799 for the total period of the study. Simulation of alternative harvesting scenarios suggested that at least 20% of the catchment planted area must be harvested to increase discharge. This model could be a useful practical tool in various plantation forestry contexts around the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Land use change as conversion pasture to forest produces several changes on hydrological cycle. In this paper, we analyse the effects on stream discharge of afforestation of a small watershed devoted to pasture using the HBV hydrological model. Streamflow data obtained over the first 10 years after planting were employed to evaluate the capacity of HBV model to simulate hydrological behaviour of catchment after afforestation. Obtained results indicate that the estimation of streamflow was accurate as reflected by statistics (R2 = 0.90, NSC = 0.89 and PBIAS = 0.34). Afterwards, streamflow under pasture land use (if afforestation had not occurred) was simulated using hydrometeorological data collected during the period of study and model parameters optimized previously, together with two parameters, pcorr and cevpfo, that were adjusted for pasture conditions. The HBV model results indicate that afforestation produced a water yield reduction around 2000 mm (22% of total stream discharge) during the first 10 years of planting growth. The differences between forest and pasture land cover are increasing in all seasons year by year. The greatest streamflow reduction was observed in wet period (autumn and winter) with 76% of total reduction. In summer, streamflow reduction represents only 3% of total, however, represents 24.7% of discharge in this season. Streamflow reduction was related to increase of rainfall interception (mainly in wet periods) and the increase of evapotranspiration by plantation in dry periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Fast-growing forest plantations have been expanding in Brazil in the last 50 years, which reach productivities by over 40 m3 ha−1 year−1 in reduced rotation between 5 and 15 years. In the 1990s, environmental warnings about these plantations guided research projects seeking to understand their effects on water and propose forest management actions to minimize them. The assessment of forest management effects on water resources is conducted by long-term experiments in paired catchments. In this paper we present results of some studies conducted at the hydrological monitoring centre of Itatinga Experimental Forest Station, of the University of São Paulo, where hydrological monitoring began in 1987, and currently include three catchments (83–98 ha) under different forest management regimes: short-rotation Eucalyptus plantation, long-term forest plantation mosaic and native forest restoration. Results show that at similar conditions observed at study area including deep soils and good natural water regulation, hydrological effects vary according to the forest management regime adopted, increasing water consumption and making the flow regime vulnerable to intra- and inter-annual seasonality. Regarding water quality, weekly sampling results showed suspended sediments and nitrate concentrations below water quality thresholds criteria by silvicultural operations, and the effects were transient but higher concentrations of nutrients were observed in intensive management regime. In the study area, reducing the management intensity of forest plantation by increasing the rotation time, adopting forest age mosaic and avoiding the coppice technique are alternative choices that reduced water use and increased flow regulation. Different adopted forest management schemes directly affected water use, showing that in water-deficit tropical regions, management regime of fast-growing forest plantations controls water availability.  相似文献   

7.
The jarrah (Eucalyptus marginata) forest on a small catchment was thinned early in 1983 to study the effect on catchment hydrology. The thinning reduced canopy cover, basal area and stocking about two-thirds. Rainfall during the pre and post-treatment periods was 21% and 10%, respectively, below the long-term average. Streamflow increased from 0.5% of rainfall (4.3 mm) before thinning to 7.6% of rainfall (90 mm) 9 years after thinning. Streamflow duration increased, with the largest increases in streamflow in the wet winter months of June-October. The deep groundwater level at a midslope location increased by 8 m and at a valley location by 4 m in the 8 years after thinning. There was no indication of a new equilibrium being reached for either streamflow or groundwater, thus further increases in streamflow and groundwater level are likely.  相似文献   

8.
Streams are usually susceptible to land-use change, mainly in the tropics due to high dynamic climatic conditions. Native forests have been converted for agricultural purposes with significantly impacts in streams. Nowadays, forests plantations are taking place of some degraded land and its influence in headwater streams are not well understood in tropical high-altitude streams. Thus, this study aims to assess effects of land-use changes from pasture to Eucalyptus plantations in Colombian Andean catchments on stream water conditions and structural characteristics of stream channels. The study was conducted in three catchments, one catchment covered by pasture, one catchment that was converted from pasture to Eucalyptus plantations in 1995 and one pristine catchment with native forest cover. Physical, chemical and biological conditions of stream water were assessed by measurements of water temperature, concentration of dissolved oxygen and chlorophyll-a content of epiphytic communities. The structural characteristics of stream channels were evaluated using a visual-based habitat assessment protocol from the United States Environmental Protection Agency. Principal Component Analysis (PCA) showed native forest and Eucalyptus plantations catchments associated with stream conservation characteristics and pasture catchment with overall degraded conditions. However, the Permutational multivariate analysis of variance (PERMANOVA) showed significant differences between all streams indicating that, despite the overall positive conservation aspects of native and Eucalyptus catchments, their still different from each other. Pasture catchment showed the highest values for temperature and chlorophyll-a, and the lowest values for dissolved oxygen and final score for structural characteristics. Therefore, our results demonstrated that the land-use change from pasture to Eucalyptus plantation improved the stream water conditions and the structural characteristics of the studied headwater streams. Additionally, we propose the use of the rapid bioassessment protocol coupled some stream water characteristics as a rapid and useful tool for detecting effects of land-use changes on high-altitude Andean streams.  相似文献   

9.
Forestal Arauco (FA), a global manufacturer of forest products, manages more than 1 million ha of forest plantations and oversees the conservation of more than half a million hectares of native forest and vegetation in Brazil, Argentina and Chile. In 2008, FA responded to local concerns about the effect of plantations on water resources and commenced streamflow monitoring in catchments in the coastal range of central-southern Chile between 35° and 39° of latitude south. This data note presents an overview of daily streamflow and rainfall records for 10 small catchments (18–112 ha) from 2008 to 2018. The catchments are covered by three different forest types, namely native forest (2), pine plantations of different ages (6) and eucalypt plantations (2). All of these catchments share similar metamorphic geology. A 90° V notch weir was built at each catchment outlet and data collected at 5 min interval using a pressure transducer that was calibrated monthly. The dataset is part of a research programme aiming to improve our understanding about the role of forest plantations on water balance at a stand and catchment level. It also includes the rainfall data from these catchments estimated using a combination of local rain gauges and data from the longer term records of the Chilean Directorate of Water. This dataset can be used in hydrological modelling and in a wide range of research questions and water management issues regarding forest plantations in a Mediterranean climate.  相似文献   

10.
Six small, steep, south-west facing catchments (1.63–4.62 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. The 11-year water balance for the native forest catchments was: rain = streamflow + interception loss + transpiration + seepage (2370mm = 1290mm + 620mm + 360mm + 100mm). In the year after treatment streamflow generally increased by 200–250 mm, except for one treatment (clearfelling, herbicide application, no riparian reserve) where the increase was 550 mm. The catchments were planted with Pinus radiata, but rapid colonization by bracken (Pteridium esculentum) and Himalayan honeysuckle (Leycesteria formosa) led to a rapid decline in streamflow, which returned to pre-treatment levels after an average of about five years. Streamflow yields then continued to decline for another two to three years before stabilizing at a level about 250mm yr?1 lower than pre-treatment levels. At this time the catchments had a dense bracken/honeysuckle understorey beneath 5 m tall pine trees.  相似文献   

11.
Water yield issues in the jarrah forest of south-western Australia   总被引:2,自引:0,他引:2  
The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12–15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.  相似文献   

12.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   

13.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   

14.
Streamflow generation was investigated using isotopic and geochemical tracers in semiarid, glacier-covered, montane catchments in the upper Shule River, northeastern Tibetan Plateau. Samples from stream water, precipitation, glacier meltwater, and groundwater were collected at the Suli and Gahe catchments along the Shule River, with an area of 1908 and 4210 km2, respectively. The samples were analysed for stable isotopes of water and major ions. Results of diagnostic tools of mixing models showed that Ca2+, Mg2+ and Cl, along with δ18O and δ2H, behaved conservatively as a result of mixing of three endmembers. The three endmembers identified by the mixing analysis were surface runoff directly from precipitation, groundwater, and glacier meltwater. Streamflow was dominated by groundwater, accounting for 59% and 60% of streamflow on average in the Suli and Gahe catchments, respectively, with minimum groundwater contribution in July (47% and 50%) and maximum contribution in October (69% and 70%). The contributions of surface runoff were slightly higher in the Suli catchment (25%) than in the Gahe catchment (19%). However, the contributions of glacier meltwater were higher in the Gahe catchment (21%) compared to the Suli catchment (17%), as a result of a higher percentage of glacier covered area in the Gahe catchment. This difference followed well the non-linear power–law trend of many glacier-covered catchments around the world. As glacier retreat continues in the future, the reduction of streamflow in glacier-covered upper Shule catchment likely will be accelerated and possibly elsewhere in the Tibetan Plateau. This study suggests that it is critical to define the turning point of an accelerated reduction in glacier meltwater for glacier-covered catchments around the world in order to better assess and manage water resources.  相似文献   

15.
The Jonkershoek Forestry Research Station was established in the Mediterranean climate region of South Africa in 1935 to implement a multiple catchment experiment to determine the effects of afforestation on water yield. The experiment consists of six neighbouring catchments previously supporting indigenous fynbos shrublands, five of which were sequentially afforested with Pinus radiata plantations every 8 years from 1940 to 1980 and one kept as the control. They conclusively demonstrated a significant impact of afforestation on streamflow. The treatment catchments have seen subsequent plantation rotations since 1980 and rainfall and streamflow observations have been continued to date. Here we describe the site, experimental design, rainfall and streamflow records, instrumentation, and how to access the data. We also provide details of recently installed instrumentation, including full weather stations, fog gauges, and an eddy covariance flux tower. The Jonkershoek catchment experiment was the core of a globally significant interdisciplinary research programme (1935–1992) that shaped most environmental policies and practices relating to biodiversity, forestry, fire and water in South Africa and beyond. The South African Environmental Observation Network (SAEON) inherited the experiment in 2010 and is maintaining it as a long-term eco-hydrological research platform and global change observatory.  相似文献   

16.
The introduction of exotic, fast-growing forest species in the Pampa biome (Southern Grasslands) is a controversial topic, considering the potential effect on water and soil resources. This repository contains hydrologic data (rainfall, discharge and turbidity) collected since 2011 in three small (≤1.1 km2), paired experimental catchments of the “Ponta da Canas” site, in the Pampa biome in subtropical Brazil. Two catchments are predominantly covered with eucalyptus plantations, and one with livestock-grazing degraded grassland. For each catchment, the collected data include 10-min resolution rainfall, streamflow, and turbidity (except for one of the eucalyptus catchments), automatically recorded in 10-min intervals. In each catchment, rainfall is measured with an automatic tipping-bucket rain gauge; stream depth is determined with a pressure transducer at the spillway, and a rating curve is used to estimate discharge; and turbidity is measured with a turbidimeter. The collected data are being used to understand water balance and sediment production under the distinct land uses, to improve forest management, and comply with State legislation.  相似文献   

17.
In central Chile, many communities rely on water obtained from small catchments in the coastal mountains. Water security for these communities is most vulnerable during the summer dry season and, from 2010 to 2017, rainfall during the dry season was between 20% and 40% below the long-term average. The rate of decrease in stream flow after a rainfall event is a good measure of the risk of flow decreasing below a critical threshold. This risk of low flow can be quantified using a recession coefficient (α) that is the slope of an exponential decay function relating flow to time since rainfall. A mathematical model was used to estimate the recession coefficient (α) for 142 rainstorm events (64 in summer; 78 in winter) in eight monitored catchments between 2008 and 2017. These catchments all have a similar geology and extend from 35 to 39 degrees of latitude south in the coastal range of south-central Chile. A hierarchical cluster analysis was used to test for differences between the mean value of α for different regions and forest types in winter and summer. The value of α did not differ (p < 0.05) between catchments in winter. Some differences were observed during summer and these were attributed to morphological differences between catchments and, in the northernmost catchments, the effect of land cover (native forest and plantation). Moreover, α for catchments with native forest was similar to those with pine plantations, although there was no difference (p < 0.05) between these and Eucalyptus plantations. The recession constant is a well-established method for understanding the effect of climate and disturbance on low flows and baseflows and can enhance local and regional analyses of hydrological processes. Understanding the recession of flow after rainfall in small headwater catchments, especially during summer, is vital for water resources management in areas where the establishment of plantations has occurred in a drying climate.  相似文献   

18.
This paper presents preliminary results from an analysis of hydrological variability of a catchment located in Galicia (NW Spain), with particular focus on the effects of climate variability (temperature and precipitation), using daily streamflow data for the period October 2004 to September 2009. The climate variability has been studied by means of data obtained in a meteorological station on the area. The analysis is based on the examination of statistical parameters, flow duration characteristics, baseflow separation and the relationship between measured streamflow and precipitation. The results show that daily, monthly and annual streamflow are highly variable in this catchment. At seasonal scale about 65% of the water flows in winter (33%) and spring (32%) months, although with significant differences between years. This seasonality essentially relates to distribution and characteristics of precipitation episodes. However, there is not a narrow relationship between precipitation and streamflow, because soil moisture conditions have an important role in the hydrological behaviour of the catchment. The baseflow contribution to total streamflow is quite high, with baseflow index values above 0.69, which is consistent with the characteristics of the study area, such as geology (dominated by schist), soils (Umbrisols and Cambisols), vegetation cover (over 65% forest area) and precipitation characteristics (heavy, long duration and low intensity). The flow duration analysis also reveals that the flow regime is dominated by baseflow, recording high flow peaks during a limited period of the year. The study reveals that the major cause of streamflow variability in this catchment is related to precipitation distribution and soil moisture conditions. The results suggest that the Corbeira stream undergoes a reduction in low streamflows and an increase in the frequency of high flows, hence producing an increase in the risks associated with these changes.  相似文献   

19.
Abstract

Abstract Accurate estimates of water losses from mature Sitka spruce (Picea sitchensis) plantations in the UK uplands are required to assess the sustainability of water supply in the event of land-use change. Many investigations have demonstrated that afforestation increases water losses from temperate upland catchments, to up to 40% of annual site rainfall. In a 0.86 km2 upland water supply catchment in southwest Scotland, interception loss in a Sitka spruce-dominated 37-year old plantation, was 52% of annual precipitation (2912 mm), considerably higher than reported in previous studies of similar catchments. From direct measurements of rainfall, cloudwater, discharge and soil evaporation, the catchment water balance was 96–117% complete, within the limits of measurement error. The most probable explanation for the higher forest interception loss reported here is the inclusion of cloudwater measurements.  相似文献   

20.
Understanding how land cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics-based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2 headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind-scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号