首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Boninites are an important ‘end-member’ supra-subductionzone magmatic suite as they have the highest H2O contents andrequire the most refractory of mantle wedge sources. The pressure–temperatureconditions of boninite origins in the mantle wedge are importantto understanding subduction zone initiation and subsequent evolution.Reaction experiments at 1·5 GPa (1350–1530°C),2 GPa (1400–1600°C) and 2·5 GPa (1450–1530°C)between a model primary high-Ca boninite magma composition anda refractory harzburgite under anhydrous and H2O-undersaturatedconditions (2–3 wt % H2O in the melt) have been completed.The boninite composition was modelled on melt inclusions occurringin the most magnesian olivine phenocrysts in high-Ca boninitesfrom the Northern Tongan forearc and the Upper Pillow Lavasof the Troodos ophiolite. Direct melting experiments on a modelrefractory lherzolite and a harzburgite composition at 1·5GPa under anhydrous conditions (1400–1600°C) havealso been completed. Experiments establish a P, T ‘meltinggrid’ for refractory harzburgite at 1·5, 2 and2·5 GPa and in the presence of 2–3 wt % H2O. Theeffect of 2–3 wt % dissolved H2O produces a liquidus depressionin primary boninite of  相似文献   

2.
Phenocryst compositions and mineral–melt equilibria inthe mildly alkalic basalts from the 25 Ma Mont Crozier sectionon the Kerguelen Archipelago are used to estimate the depthsat which magmas stalled and crystallized and to constrain therole of crustal structure in the evolution of magmas producedby the Kerguelen mantle plume. The Crozier section, of nearly1000 m height, consists of variably porphyritic flows (up to21 vol. % phenocrysts), dominated by plagioclase ± clinopyroxene± olivine ± Fe–Ti oxides. Feldspars showan extreme range of compositions from high-Ca plagioclase (An88)to sanidine and variable textures that are related to extensivefractionation, degassing, and mixing in relatively low-pressure(sub-volcanic) magma chambers. Although clinopyroxene is a minorphenocryst type (0–3 vol. %), its non-quadrilateral components,principally Al (1·9–8·6 wt % Al2O3), varywidely. The results of clinopyroxene–liquid thermobarometryand clinopyroxene structural barometry indicate that the Croziermagmas crystallized at pressures ranging from  相似文献   

3.
We report the first estimates of primary kimberlite melt compositionfrom the Slave craton, based on samples of aphanitic kimberlitefrom the Jericho kimberlite pipe, N.W.T., Canada. Three samplesderive from the margins of dykes where kimberlite chilled againstwall rock (JD51, JD69 and JD82) and are shown to be texturallyconsistent with crystallization from a melt. Samples JD69 andJD82 have geochemical characteristics of primitive melts: theyhave high MgO (20–25 wt %), high mg-numbers (86–88),and high Cr (1300–1900 ppm) and Ni (800–1400 ppm)contents. They also have high contents of CO2 (10–17 wt%). Relative to bulk macrocrystal kimberlite, they have lowermg-numbers and lower MgO but are enriched in incompatible elements(e.g. Zr, Nb and Y), because the bulk kimberlite compositionsare strongly controlled by accumulation of mantle olivine andother macrocrysts. The compositions of aphanitic kimberlitefrom Jericho are similar to melts produced experimentally bypartial melting of a carbonate-bearing garnet lherzolite. Onthe basis of these experimental data, we show that the primarymagmas from the Jericho kimberlite could represent 0·7–0·9%melting of a carbonated lherzolitic mantle source at pressuresand temperatures found in the uppermost asthenosphere to theSlave craton. The measured CO2 contents for samples JD69 andJD82 are only slightly lower than the CO2 contents of the correspondingexperimental melts; this suggests that the earliest hypabyssalphase of the Jericho kimberlite retained most of its originalvolatile content. As such these samples provide a minimum CO2content for the primary kimberlite magmas from the Slave craton. KEY WORDS: kimberlite; melt; primitive; primary magma; Slave craton  相似文献   

4.
Ultra-calcic ankaramitic magmas or melt inclusions are ubiquitousin arc, ocean-island and mid-ocean ridge settings. They areprimitive in character (XMg > 0·65) and have highCaO contents (>14 wt %) and CaO/Al2O3 (>1·1). Experimentson an ankaramite from Epi, Vanuatu arc, demonstrate that itsliquidus surface has only clinopyroxene at pressures of 15 and20 kbar, with XCO2 in the volatile component from 0 to 0·86.The parental Epi ankaramite is thus not an unfractionated magma.However, forcing the ankaramite experimentally into saturationwith olivine, orthopyroxene and spinel results in more magnesian,ultra-calcic melts with CaO/Al2O3 of 1·21–1·58.The experimental melts are not extremely Ca-rich but high inCaO/Al2O3 and in MgO (up to 18.5 wt %), and would evolve tohigh-CaO melts through olivine fractionation. Fractionationmodels show that the Epi parent magma can be derived from suchultra-calcic experimental melts through mainly olivine fractionation.We show that the experimental ultra-calcic melts could formthrough low-degree melting of somewhat refractory mantle. Thelatter would have been depleted by previous melt extraction,which increases the CaO/Al2O3 in the residue as long as someclinopyroxene remains residual. This finding corrects the commonassumption that ultra-calcic magmas must come from a Ca-richpyroxenite-type source. The temperatures necessary for the generationof ultra-calcic magmas are  相似文献   

5.
Volatile Components, Magmas, and Critical Fluids in Upwelling Mantle   总被引:9,自引:2,他引:7  
The phase diagram for lherzolite–CO2–H2O providesa framework for interpreting the distribution of phase assemblagesin the upper mantle with various thermal structures, in differenttectonic settings. Experiments show that at depths >80 km,the near-solidus partial melts from lherzolite–CO2–H2Oare dolomitic, changing through carbonate–silicate liquidswith rising temperatures to mafic liquids; vapor, if it coexists,is aqueous. Experimental data from simple systems suggest thata critical end-point (K) occurs on the mantle solidus at anundetermined depth. Isobaric (T–X) phase diagrams forvolatile-bearing systems with K elucidate the contrasting phaserelationships for lherzolite–CO2–H2O at depths belowand above a critical end-point, arbitrarily placed at 250 km.At levels deeper than K, lherzolite can exist with dolomiticmelt, aqueous vapor, or with critical fluids varying continuouslybetween these end-members. Analyses of fluids in microinclusionsof fibrous diamonds reveal this same range of compositions,supporting the occurrence of a critical end-point. Other evidencefrom diamonds indicates that the minimum depth for this end-pointis 125 km; maximum depth is not constrained. Constructed cross-sectionsshowing diagrammatically the phase fields intersected by upwellingmantle indicate how rising trace melts may influence trace elementconcentrations within a mantle plume. KEY WORDS: mantle solidus; critical end-point; dolomitic magma; diamond inclusions; critical fluids  相似文献   

6.
The Tertiary to Recent basalts of Victoria and Tasmania havemineralogical and major element characteristics of magmas encompassingthe range from quartz tholeiites to olivine melilitites. Abundancesof trace elements such as incompatible elements, including therare earth elements (REE), and the compatible elements Ni, Coand Sc, vary systematically through this compositional spectrum.On the basis of included mantle xenoliths, appropriate 100 Mg/Mg+ Fe+2 (68–72) and high Ni contents many of these basaltsrepresent primary magmas (i.e., unmodified partial melts ofmantle peridotite). For fractionated basalts we have derivedmodel primary magma compositions by estimating the compositionalchanges caused by fractional crystallization of olivine andpyroxene at low or moderate pressure. A pyrolite model mantlecomposition has been used to establish and evaluate partialmelting models for these primary magmas. By definition and experimentaltesting the specific pyrolite composition yields parental olivinetholeiite magma similar to that of KilaeauIki, Hawaii (1959–60)and residual harzburgite by 33 per cent melting. It is shownthat a source pyrolite composition differing only in having0.3–0.4 per cent TiO2 rather than 0.7 per cent TiO2, isable to yield the spectrum of primary basalts for the Victorian-Tasmanianprovince by 4 per cent to 25 per cent partial melting. The mineralogiesof residual peridotites are consistent with known liquidus phaserelationships of the primary magmas at high pressures and thechemical compositions of residual peridotite are similar tonatural depleted or refractory lherzolites and harzburgites.For low degrees of melting the nature of the liquid and of theresidual peridotite are sensitively dependent on the contentof H2O, CO2 and the CO2/H2O in the source pyrolite. The melting models have been tested for their ability to accountfor the minor and trace element, particularly the distinctivelyfractionated REE, contents of the primary magmas. A single sourcepyrolite composition can yield the observed minor and traceelement abundances (within at most a factor of 2 and commonlymuch closer) for olivine melilitite (4–6 per cent melt),olivine nephelinite, basanite (5–7 per cent melt), alkaliolivine basalt (11–15 per cent melt), olivine basalt andolivine tholeiite (20–25 per cent melt) provided thatthe source pyrolite was already enriched in strongly incompatibleelements (Ba, Sr, Th, U, LREE) at 6–9 x chondritic abundancesand less enriched (2.5–3 x chondrites) in moderately incompatible(Ti, Zr, Hf, Y, HREE) prior to the partial melting event. Thesources regions for S.E. Australian basalts are similar to thosefor oceanic island basalts (Hawaii, Comores, Iceland, Azores)or for continental and rift-valley basaltic provinces and verydifferent in trace element abundances from the model sourceregions for most mid-ocean ridge basalts. We infer that thismantle heterogeneity has resulted from migration within theupper mantle (LVZ or below the LVZ) of a melt or fluid (H2O,CO2-enriched) with incompatible element concentrations similarto those of olivine melilitite, kimberlite or carbonatite. Asa result of this migration, some mantle regions are enrichedin incompatible elements and other areas are depleted. Although it is possible, within the general framework of a lherzolitesource composition, to derive the basanites, olivine nephelinitesand olivine melilitites from a source rock with chondritic relativeREE abundances at 2–5 x chondritic levels, these modelsrequire extremely small degrees of melting (0.4 per cent forolivine melilitite to 1 per cent for basanite). Furthermore,it is not possible to derive the olivine tholeiite magmas fromsource regions with chondritic relative REE abundances withoutconflicting with major element and experimental petrology argumentsrequiring high degrees (15 per cent) of melting and the absenceof residual garnet. If these arguments are disregarded, andpartial melting models are constrained to source regions withchondritic relative REE abundances, then magmas from olivinemelilitites to olivine tholeiites can be modelled if degreesof melting are sufficiently small, e.g., 7 per cent meltingfor olivine tholeiite. However, the source regions must be heterogenousfrom 1 to 5 x chondritic in absolute REE abundances and heterogerieousin other trace elements as well. This model is rejected in favorof the model requiring variation in degree of melting from 4per cent to 25 per cent and mantle source regions ranging fromLREE-enriched to LREE-depleted relative to chondritic REE abundances.  相似文献   

7.
Mineral and melt inclusions in olivines from the most Mg-richmagma from the southern West Sulawesi Volcanic Province indicatethat two distinct melts contributed to its petrogenesis. Thecontribution that dominates the whole-rock composition comesfrom a liquid with high CaO (up to 16 wt %) and low Al2O3 contents(CaO/Al2O3 up to 1), in equilibrium with spinel, olivine (Fo85–91;CaO 0·35–0·5 wt %; NiO 0·2–0·30wt %) and clinopyroxene. The other component is richer in SiO2(>50 wt %) and Al2O3 (19–21 wt %), but contains significantlyless CaO (<4 wt %); it is in equilibrium with Cr-rich spinelwith a low TiO2 content, olivine with low CaO and high NiO content(Fo90–94; CaO 0·05–0·20 wt %; NiO0·35–0·5 wt %), and orthopyroxene. Boththe high- and low-CaO melts are potassium-rich (>3 wt % K2O).The high-CaO melt has a normalized trace element pattern thatis typical for subduction-related volcanic rocks, with negativeTa–Nb and Ti anomalies, positive K, Pb and Sr anomalies,and a relatively flat heavy rare earth element (HREE) pattern.The low-CaO melt shows Y and HREE depletion (Gdn/Ybn 41), butits trace element pattern resembles that of the whole-rock andhigh-CaO melt in other respects, suggesting only small distinctionsin source areas between the two components. We propose thatthe depth of melting and the dominance of H2O- or CO2-bearingfluids were the main controls on generating these contrastingmagmas in a syn-collisional environment. The composition ofthe low-CaO magma does not have any obvious rock equivalent,and it is possible that this type of magma does not easily reachthe Earth's surface without the assistance of a water-poor carriermagma. KEY WORDS: melt inclusions; mineral chemistry; olivine; syn-collisional magmatism; ankaramites; low-Ca magma  相似文献   

8.
The near-liquidus crystallization of a high-K basalt (PST-9golden pumice, 49·4 wt % SiO2, 1·85 wt % K2O,7·96 wt % MgO) from the present-day activity of Stromboli(Aeolian Islands, Italy) has been experimentally investigatedbetween 1050 and 1175°C, at pressures from 50 to 400 MPa,for melt H2O concentrations between 1·2 and 5·5wt % and NNO ranging from –0·07 to +2·32.A drop-quench device was systematically used. AuPd alloys wereused as containers in most cases, resulting in an average Feloss of 13% for the 34 charges studied. Major crystallizingphases include clinopyroxene, olivine and plagioclase. Fe–Tioxide was encountered in a few charges. Clinopyroxene is theliquidus phase at 400 MPa down to at least 200 MPa, followedby olivine and plagioclase. The compositions of all major phasesand glass vary systematically with the proportion of crystals.Ca in clinopyroxene sensitively depends on the H2O concentrationof the coexisting melt, and clinopyroxene Mg-number shows aweak negative correlation with NNO. The experimental data allowthe liquidus surface of PST-9 to be defined. When used in combinationwith melt inclusion data, a consistent set of pre-eruptive pressures(100–270 MPa), temperatures (1140–1160°C) andmelt H2O concentrations is obtained. Near-liquidus phase equilibriaand clinopyroxene Ca contents require melt H2O concentrations<2·7–3·6 and 3 ± 1 wt %, respectively,overlapping with the maximum frequency of glass inclusion data(2·5–2·7 wt % H2O). For olivine to crystallizeclose to the liquidus, pressures close to 200 MPa are needed.Redox conditions around NNO = +0·5 are inferred fromclinopyroxene compositions. The determined pre-eruptive parametersrefer to the storage region of golden pumice melts, which islocated at a depth of around 7·5 km, within the metamorphicarc crust. Golden pumice melts ascending from their storagezone along an adiabat will not experience crystallization ontheir way to the surface. KEY WORDS: basalt; pumice; experiment; phase equilibria; Stromboli  相似文献   

9.
Melt inclusion and host glass compositions from the easternend of the Southwest Indian Ridge show a progressive depletionin light rare earth elements (LREE), Na8 and (La/Sm)n, but anincrease in Fe8, from the NE (64°E) towards the SW (49°E).These changes indicate an increase in the degree of mantle meltingtowards the SW and correlate with a shallowing of the ridgeaxial depth and increase in crustal thickness. In addition,LREE enrichment in both melt inclusions and host glasses fromthe NE end of the ridge are compatible with re-fertilizationof a depleted mantle source. The large compositional variations(e.g. P2O5 and K2O) of the melt inclusions from the NE end ofthe ridge (64°E), coupled with low Fe8 values, suggest thatmelts from the NE correspond to a variety of different batchesof melts generated at shallow levels in the mantle melting column.In contrast, the progressively more depleted compositions andhigher Fe8 values of the olivine- and plagioclase-hosted meltinclusions at the SW end of the studied region (49°E), suggestthat these melt inclusions represent batches of melt generatedby higher degrees of melting at greater mean depths in the mantlemelting column. Systematic differences in Fe8 values betweenthe plagioclase- and the olivine-hosted melt inclusions in theSW end (49°E) of the studied ridge area, suggest that theplagioclase-hosted melt inclusions represent final batches ofmelt generated at the top of the mantle melting column, whereasthe olivine-hosted melt inclusions correspond to melts generatedfrom less depleted, more fertile mantle at greater depths. KEY WORDS: basalt; melt inclusions; olivine; plagioclase; Southwest Indian Ridge  相似文献   

10.
Experimental Constraints on the Origin of the 1991 Pinatubo Dacite   总被引:12,自引:2,他引:12  
Crystallization (dacite) and interaction (dacite–peridotite)experiments have been performed on the 1991 Pinatubo dacite(Luzon Island, Philippines) to constrain its petrogenesis. Inthe dacite–H2O system at 960 MPa, magnetite and eitherclinopyroxene (low H2O) or amphibole (high H2O) are the liquidusphases. No garnet is observed at this pressure. Dacite–peridotite interaction at 920 MPa produces massive orthopyroxenecrystallization, in addition to amphibole ± phlogopite.Amphibole crystallizing in dacite at 960 MPa has the same compositionas the aluminium-rich hornblende preserved in the cores of amphibolephenocrysts in the 1991 dacite, suggesting a high-pressure stageof dacite crystallization with high melt H2O contents (>10wt %) at relatively low temperature (<950°C). The compositionsof plagioclase, amphibole and melt inclusion suggest that thePinatubo dacite was water-rich, oxidized and not much hotterthan 900°C, when emplaced into the shallow magma reservoirin which most phenocrysts precipitated before the onset of the1991 eruption. The LREE-enriched REE pattern of the whole-rockdacite demands garnet somewhere during its petrogenesis, whichin turn suggests high-pressure derivation. Partial melting ofsubducted oceanic crust yields melts unlike the Pinatubo dacite.Interaction of these slab melts with sub-arc peridotite is unableto produce a Pinatubo type of dacite, nor is a direct mantleorigin conceivable on the basis of our peridotite–daciteinteraction experimental results. Dehydration melting of underplatedbasalts requires unrealistically high temperatures and doesnot yield dacite with the low FeO/MgO, and high H2O, Ni andCr contents typical of the Pinatubo dacite. The most plausibleorigin of the Pinatubo dacite is via high-pressure fractionationof a hydrous, oxidized, primitive basalt that crystallized amphiboleand garnet upon cooling. Dacite melts produced in this way weredirectly expelled from the uppermost mantle or lower crust toshallow-level reservoirs from which they erupted occasionally.Magmas such as the Pinatubo dacite may provide evidence forthe existence of particularly H2O-rich conditions in the sub-arcmantle wedge rather than the melting of the young, hot subductingoceanic plate. KEY WORDS: Pinatubo dacite; slab melt; experimental petrology; arc magmas  相似文献   

11.
Olivine tholeiites (8–10 wt. % MgO) from Krafla show significantcorrelations between major elements (notably Fe) and incompatibletrace elements. In particular, the samples with the highestFe contents are the most enriched in elements such as K, Ti,and light rare earth elements (LREEs). The observed trends cannotbe explained by fractional crystallization of olivine, plagioclase,or clinopyrox-ene from a single primary magma, nor are theylikely to result from crustal contamination. The simplest explanationfor the compositional variations is that they result from imperfectmixing of primary melts, produced at different levels in theupwelling asthenosphere, which later underwent olivine fractionation.Nd and Sr isotopic data hint at the possibility that some mixingbetween two (plume and non-plume) mantle sources may also berequired. The average olivine tholeiite composition is comparedwith the average compositions of melts, predicted from parameterizationsof melting experiments, produced from mantle with differentpotential temperatures. The predicted compositions were correctedfor fractional crystallization before the comparison was made.The data compare well with the predicted average compositionof melt from mantle with a potential temperature of {small tilde}1580C. Differences between the observed and predicted compositions(notably higher Fe and lower Na in the Krafla basalts) are ascribedeither to errors related to the modelling or to the effect oftemperature- and velocity-structure of the mantle plume beneathIceland. The average REE composition of the olivine tholeiiteswas then inverted to obtain the variation of melt fraction withdepth. The predicted melt fraction rises from 00 at a depthof {small tilde} 140 km (consistent with a potential temperatureclose to 1580 C) to a maximum value of {small tilde} 03 atthe surface. The predicted melt thickness ({small tilde}22 kmwhen corrected for fractional crystallization) is consistentwith geophysical estimates of crustal thickness.  相似文献   

12.
High-Mg basaltic andesites and andesites occur in the central trans-Mexican volcanic belt, and their primitive geochemical characteristics suggest equilibration with mantle peridotite. These lavas may represent slab melts that reequilibrated with overlying peridotite or hydrous partial melts of a peridotite source. Here, we experimentally map the liquidus mineralogy for a high-Mg basaltic andesite (9.6 wt% MgO, 54.4 wt% SiO2, Mg# = 75.3) as a function of temperature and H2O content over a range of mantle wedge pressures. Our results permit equilibration of this composition with a harzburgite residue at relatively high water contents (>7 wt%) and low temperatures (1,080–1,150°C) at 11–14 kbar. However, in contrast to the high Ni contents characteristic of olivine phenocrysts in many such samples from central Mexico, those of olivine phenocrysts in our sample are more typical of mantle melts that have fractionated a small amount of olivine. To account for this and the possibility that the refractory mantle source may have had olivine more Fo-rich than Fo90, we numerically evaluated alternative equilibration conditions, using our starting bulk composition adjusted to be in equilibrium with Fo92 olivine. This shifts equilibration conditions to higher temperatures (1,180–1,250°C) at mantle wedge pressures (11–15 kbar) for H2O contents (>3 wt%) comparable to those analyzed in olivine-hosted melt inclusions from this region. Comparison with geodynamic models shows that final equilibration occurred shallower than the peak temperature of the mantle wedge, suggesting that basaltic melts from the hottest part of the wedge reequilibrated with shallower mantle as they approached the Moho.  相似文献   

13.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

14.
Olivine + clinopyroxene ± amphibole cumulates have beenwidely documented in island arc settings and may constitutea significant portion of the lowermost arc crust. Because ofthe low melting temperature of amphibole (1100°C), suchcumulates could melt during intrusion of primary mantle magmas.We have experimentally (piston-cylinder, 0·5–1·0GPa, 1200–1350°C, Pt–graphite capsules) investigatedthe melting behaviour of a model amphibole–olivine–clinopyroxenerock, to assess the possible role of such cumulates in islandarc magma genesis. Initial melts are controlled by pargasiticamphibole breakdown, are strongly nepheline-normative and areAl2O3-rich. With increasing melt fraction (T > 1190°Cat 1·0 GPa), the melts become ultra-calcic while remainingstrongly nepheline-normative, and are saturated with olivineand clinopyroxene. The experimental melts have strong compositionalsimilarities to natural nepheline-normative ultra-calcic meltinclusions and lavas exclusively found in arc settings. Theexperimentally derived phase relations show that such naturalmelt compositions originate by melting according to the reactionamphibole + clinopyroxene = melt + olivine in the arc crust.Pargasitic amphibole is the key phase in this process, as itlowers melting temperatures and imposes the nepheline-normativesignature. Ultra-calcic nepheline-normative melt inclusionsare tracers of magma–rock interaction (assimilative recycling)in the arc crust. KEY WORDS: experimental melting; subduction zone; ultra-calcic melts; wehrlite  相似文献   

15.
Experimental Melting of Carbonated Peridotite at 6-10 GPa   总被引:2,自引:0,他引:2  
Partial melting of magnesite-bearing peridotites was studiedat 6–10 GPa and 1300–1700°C. Experiments wereperformed in a multianvil apparatus using natural mineral mixesas starting material placed into olivine containers and sealedin Pt capsules. Partial melts originated within the peridotitelayer, migrated outside the olivine container and formed poolsof quenched melts along the wall of the Pt capsule. This allowedthe analysis of even small melt fractions. Iron loss was nota problem, because the platinum near the olivine container becamesaturated in Fe as a result of the reaction Fe2SiO4Ol = FeFe–Ptalloy + FeSiO3Opx + O2. This reaction led to a gradual increasein oxygen fugacity within the capsules as expressed, for example,in high Fe3+ in garnet. Carbonatitic to kimberlite-like meltswere obtained that coexist with olivine + orthopyroxene + garnet± clinopyroxene ± magnesite depending on P–Tconditions. Kinetic experiments and a comparison of the chemistryof phases occasionally grown within the melt pools with thosein the residual peridotite allowed us to conclude that the meltshad approached equilibrium with peridotite. Melts in equilibriumwith a magnesite-bearing garnet lherzolite are rich in CaO (20–25wt %) at all pressures and show rather low MgO and SiO2 contents(20 and 10 wt %, respectively). Melts in equilibrium with amagnesite-bearing garnet harzburgite are richer in SiO2 andMgO. The contents of these oxides increase with temperature,whereas the CaO content becomes lower. Melts from magnesite-freeexperiments are richer in SiO2, but remain silicocarbonatitic.Partitioning of trace elements between melt and garnet was studiedin several experiments at 6 and 10 GPa. The melts are very richin incompatible elements, including large ion lithophile elements(LILE), Nb, Ta and light rare earth elements. Relative to theresidual peridotite, the melts show no significant depletionin high field strength elements over LILE. We conclude fromthe major and trace element characteristics of our experimentalmelts that primitive kimberlites cannot be a direct productof single-stage melting of an asthenospheric mantle. They rathermust be derived from a previously depleted and re-enriched mantleperidotite. KEY WORDS: multianvil; carbonatite melt; peridotite; kimberlite; element partitioning  相似文献   

16.
Olivine is abundant in Earth’s upper mantle and ubiquitous in basaltic lavas, but rarely occurs in eclogite. Partial melts of eclogite are, therefore, not in equilibrium with olivine, and will react with peridotite as they migrate through the upper mantle. If such melts erupt at Earth’s surface, their compositions will be highly modified and they may be olivine-saturated. We investigated experimentally the reaction between olivine and siliceous eclogite partial melt, and determined element partitioning between olivine and the melt produced by this reaction. Our results demonstrate that mixing of reacted eclogite partial melt with primitive basalt is capable of producing the positive correlation between melt SiO2 content and olivine Ni content observed in some Hawaiian lavas. Experiments were carried out by equilibrating eclogite partial melt or basalt with San Carlos olivine at 1 bar and 1,201–1,350°C. Our results show that eclogite partial melts equilibrated with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Further, olivine-melt partition coefficients for Ni measured in these experiments are significantly larger than for basalt. Mixing of these melts with primitive Hawaiian tholeiitic lavas results in crystallization of high-Ni olivines similar to those in Makapuu-stage Koolau lavas, even though the mixed magmas have only moderate Ni contents. This results from a hyperbolic increase of the Ni partition coefficient with increasing polymerization of the mixed melt. Note that while eclogite partial melt in contact with peridotite will equilibrate with pyroxene as well as olivine, this will have the effect of buffering the activity of SiO2 in the reacted melt at a higher level. Therefore, an eclogite partial melt equilibrated with harzburgite will have higher SiO2 than one equilibrated with dunite, enhancing the effects observed in our experiments. Our results demonstrate that an olivine-free “hybrid” pyroxenite source is not required to explain the presence of high-Ni olivines in Hawaiian lavas and, therefore, indicate that the proportion of eclogite in the Hawaiian plume is less than has been estimated in recent studies.  相似文献   

17.
Ultrapotassic basaltic lavas erupted 3.4–3.6 m.y. ago(K/Ar) in the central Sierra Nevada and originated by partialmelting of a phlogopite-enriched, garnet-bearing upper mantlesource. Ultrapotassic basanites (K2O: 5–9 per cent), whichare spatially related to contemporaneous potassic olivine basalts(K2O: 3–5 per cent) and alkali olivine basalts (K2O: 1–3per cent), contain the K2O-bearing minerals phlogopite, sanidine,and leucite as well as olivine, diopside, apatite, magnetite,and pseudobrookite. The presence and modal abundance of theK2O-bearing minerals closely reflects the east to west increasein K2O throughout the basaltic suite. Many lines of evidence support the derivation of the ultrapotassicbasanites and the related basalts from an upper mantle source:TiO2 in phlogopite phenocrysts and groundmass crystals, 2–3and 7–9 per cent respectively, support phlogopite phenocrystcrystallization at high pressure, whole rock Mg values (100Mg/Mg + 0.85 Fe) range from 66–78, phlogopite-rich pyroxeniticand periodotitic nodules are included in some flows, and geobarometriccalculations indicate depths of generation at 100–125km. Also, model calculations show that the major, rare earth,and trace elements, except for Ba, Rb, and Sr, can be accuratelygenerated by 1.0–2.5 per cent melting of a phiogopite-and garnet-bearing clinopyroxene-rich upper mantle source. Partialmelting occurred after a general upper mantle enrichment beneaththe Sierra Nevada, the phlogopite- and clinopyroxene-rich sourceof the ultrapotassic lavas being the extreme result of the enrichmentprocess. Clinopyroxene enrichment of the upper mantle probablyoccurred by introduction of a partial melting fraction intothe upper mantle source areas. Enrichment of the upper mantlein the alkali and alkali-earth elements was not accomplishedby a partial melt, but resulted from influx of a fluid phaserich in Ba, K, Rb, Sr, and, probably, H2O The continuous rangein K2O of the erupted lavas implies that the upper mantle enrichmentis a cumulative process. The inverse relationship in the SierraNevada between uplift and the K2O content of the erupted basaltsimplies that a critical relationship may exist between upliftand upper mantle enrichment.  相似文献   

18.
Degassing processes in basaltic magmas rich in both water andcarbon dioxide can be modeled using the solubilities of theendmember systems and the assumption of Henry's law. Suitesof vapor-saturated basaltic melts having a range of initialCO2/H2O ratios and erupted over a narrow depth interval willdefine negatively sloped arrays on an H2O vs CO2 plot. It isimportant that all of the major volatile species be consideredsimultaneously when interpreting trends in dissolved volatilespecies concentrations in magmas. Based on measured concentrations of water and carbon dioxidein basaltic glasses, the composition of the vapor phase at 1200°Cthat could coexist with a basaltic melt and the pressure atwhich it would be vapor saturated can be calculated. The rangein vapor compositions in equilibrium with submarine basaltsreflects the range in water contents in the melts characteristicof each environment. The ranges in the molar proportion of CO2in vapor phases (XCO2) calculated to be in equilibrium withsubmarine tholeiitic glasses are 0•93–1•00 formid-ocean ridge basalts (MORB), 0•60–0•99 forglasses from Kilauea [representative of ocean island basalts(OIB)] and 0–0•94 for glasses from back-arc basins(BABB). MORB glasses from spreading centers ranging from slow(e.g. the Mid-Atlantic Ridge) to fast (e.g. East Pacific Rise,9–13°N) are commonly supersaturated with respect toCO2-rich vapor, resulting from magma ascent rates so rapid thatmagmas erupt on the sea-floor without having been fully degassedby bubble nucleation and growth during ascent. In contrast tothe MORB glasses, volatile contents in submarine glasses fromKilauea are consistent with having been in equilibrium witha vapor phase containing 60–100 mol% CO2 at the pressureof eruption, reflecting differences in average magma transportrates during eruptions at mid-ocean ridges and hotspot volcanoes. Degassing during decompression of tholeiitic basaltic magmais characterized by strong partitioning of CO2 into the vaporphase. During open system degassing, CO2 is rapidly removedfrom the melt with negligible loss of water, until a pressureis reached at which the melt is in equilibrium with nearly purewater vapor. From this pressure downward, the water contentof the melt follows the water solubility curve. During closedsystem degassing, water and CO2 contents in vapor-saturatedbasaltic magmas will depend strongly on the vapor compositionas determined by the initial volatile concentrations. Deviationfrom open system behavior, toward lower dissolved H2O and CO2saturation concentrations at a given pressure, will be greatestin melts having high total volatile concentrations and highCO2:H2O ratios. Closed system degassing of basaltic melts havingthe low initial H2O and CO2 contents typical of MORB and OIB,however, are similar to the open system case. KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; degassing  相似文献   

19.
Laser ablation microprobe data are presented for olivine, orthopyroxeneand clinopyroxene in spinel harzburgite and lherzolite xenolithsfrom La Palma, Hierro, and Lanzarote, and new whole-rock trace-elementdata for xenoliths from Hierro and Lanzarote. The xenolithsshow evidence of strong major, trace element and Sr isotopedepletion (87Sr/86Sr 0·7027 in clinopyroxene in themost refractory harzburgites) overprinted by metasomatism. Thelow Sr isotope ratios are not compatible with the former suggestionof a mantle plume in the area during opening of the AtlanticOcean. Estimates suggest that the composition of the originaloceanic lithospheric mantle beneath the Canary Islands correspondsto the residues after 25–30% fractional melting of primordialmantle material; it is thus significantly more refractory than‘normal’ mid-ocean ridge basalt (MORB) mantle. Thetrace element compositions and Sr isotopic ratios of the mineralsleast affected by metasomatization indicate that the upper mantlebeneath the Canary Islands originally formed as highly refractoryoceanic lithosphere during the opening of the Atlantic Oceanin the area. During the Canarian intraplate event the uppermantle was metasomatized; the metasomatic processes includecryptic metasomatism, resetting of the Sr–Nd isotopicratios to values within the range of Canary Islands basalts,formation of minor amounts of phlogopite, and melt–wall-rockreactions. The upper mantle beneath Tenerife and La Palma isstrongly metasomatized by carbonatitic or carbonaceous meltshighly enriched in light rare earth elements (REE) relativeto heavy REE, and depleted in Zr–Hf and Ti relative toREE. In the lithospheric mantle beneath Hierro and Lanzarote,metasomatism has been relatively weak, and appears to be causedby high-Si melts producing concave-upwards trace element patternsin clinopyroxene with weak negative Zr and Ti anomalies. Ti–Al–Fe-richharzburgites/lherzolites, dunites, wehrlites and clinopyroxenitesformed from mildly alkaline basaltic melts (similar to thosethat dominate the exposed parts of the islands), and appearto be mainly restricted to magma conduits; the alkali basaltmelts have caused only local metasomatism in the mantle wall-rocksof such conduits. The various metasomatic fluids formed as theresults of immiscible separations, melt–wall-rock reactionsand chromatographic fractionation either from a CO2-rich basalticprimary melt, or, alternatively, from a basaltic and a siliceouscarbonatite or carbonaceous silicate melt. KEY WORDS: mantle xenoliths; mantle minerals; trace elements; depletion; carbonatite metasomatism  相似文献   

20.
The effects of small amounts of H2O (<4 wt % in the melt)on the multiply saturated partial melting of spinel lherzolitein the system CaO–MgO–Al2O3–SiO2 ±Na2O ± CO2 have been determined at 1·1 GPa inthe piston-cylinder apparatus. Electron microprobe analysisand Fourier transform infrared spectroscopy were used to analysethe experimental products. The effects of H2O are to decreasethe melting temperature by 45°C per wt % H2O in the melt,to increase the Al2O3 of the melts, decrease MgO and CaO, andleave SiO2 approximately constant, with melts changing fromolivine- to quartz-normative. The effects of CO2 are insignificantat zero H2O, but become noticeable as H2O increases, tendingto counteract the H2O. The interaction between H2O and CO2 causesthe solubility of CO2 at vapour saturation to increase withincreasing H2O, for small amounts of H2O. Neglect of the influenceof CO2 in some previous studies on the hydrous partial meltingof natural peridotite may explain apparent inconsistencies betweenthe results. The effect of small amounts of H2O on multiplysaturated melt compositions at 1·1 GPa is similar tothat of K2O, i.e. increasing H2O or K2O leads to quartz-normativecompositions, but increasing Na2O produces an almost oppositetrend, towards nepheline-normative compositions. KEY WORDS: H2O; CO2; FTIR; hydrous partial melting; mantle melting; spinel lherzolite; system CaO–MgO–Al2O3–SiO2 ± H2O ± CO2 ± Na2O  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号