首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We present a three-dimensional Lagrangian footprint model with the ability to predict the area of influence (footprint) of a measurement within a wide range of boundary-layer stratifications and receptor heights. The model approach uses stochastic backward trajectories of particles and satisfies the well-mixed condition in inhomogeneous turbulence for continuous transitions from stable to convective stratification. We introduce a spin-up procedure of the model and a statistical treatment of particle touchdowns which leads to a significant reduction of CPU time compared to conventional footprint modelling approaches. A comparison with other footprint models (of the analytical and Lagrangian type) suggests that the present backward Lagrangian model provides valid footprint predictions under any stratification and, moreover, for applications that reach across different similarity scaling domains (e.g., surface layer to mixed layer, for use in connection with aircraft measurements or with observations on high towers).  相似文献   

2.
We describe pragmatic and reliable methods to examine the influence of patch-scale heterogeneities on the uncertainty in long-term eddy-covariance (EC) carbon flux data and to scale between the carbon flux estimates derived from land surface optical remote sensing and directly derived from EC flux measurements on the basis of the assessment of footprint climatology. Three different aged Douglas-fir stands with EC flux towers located on Vancouver Island and part of the Fluxnet Canada Research Network were selected. Monthly, annual and interannual footprint climatologies, unweighted or weighted by carbon fluxes, were produced by a simple model based on an analytical solution of the Eulerian advection-diffusion equation. The dimensions and orientation of the flux footprint depended on the height of the measurement, surface roughness length, wind speed and direction, and atmospheric stability. The weighted footprint climatology varied with the different carbon flux components and was asymmetrically distributed around the tower, and its size and spatial structure significantly varied monthly, seasonally and inter-annually. Gross primary productivity (GPP) maps at 10-m resolution were produced using a tower-mounted multi-angular spectroradiometer, combined with the canopy structural information derived from airborne laser scanning (Lidar) data. The horizontal arrays of footprint climatology were superimposed on the 10-m-resolution GPP maps. Monthly and annual uncertainties in EC flux caused by variations in footprint climatology of the 59-year-old Douglas-fir stand were estimated to be approximately 15–20% based on a comparison of GPP estimates derived from EC and remote sensing measurements, and on sensor location bias analysis. The footprint-variation-induced uncertainty in long-term EC flux measurements was mainly dependent on the site spatial heterogeneity. The bias in carbon flux estimates using spatially-explicit ecological models or tower-based remote sensing at finer scales can be estimated by comparing the footprint-weighted and EC-derived flux estimates. This bias is useful for model parameter optimizing. The optimization of parameters in remote-sensing algorithms or ecosystem models using satellite data will, in turn, increase the accuracy in the upscaled regional carbon flux estimation.  相似文献   

3.
The flux footprint is the contribution, per unit emission, of each element of a surface area source to the vertical scalar flux measured at height z m ; it is equal to the vertical flux from a unit surface point source. The dependence of the flux footprint on crosswind location is shown to be identical to the crosswind concentration distribution for a unit surface point source; an analytic dispersion model is used to estimate the crosswind-integrated flux footprint. Based on the analytic dispersion model, a normalized crosswind-integrated footprint is proposed that principally depends on the single variable z/z m , where z is a measure of vertical dispersion from a surface source. The explicit dependence of the crosswind-integrated flux footprint on downwind distance, thermal stability and surface roughness is contained in the dependence of z on these variables. By also calculating the flux footprint with a Lagrangian stochastic dispersion model, it is shown that the normalized flux footprint is insensitive to the analytic model assumption of a self-similar vertical concentration profile.The National Center for Atmospheric Research is funded by the National Science Foundation.  相似文献   

4.
We compare flux and concentration footprint estimates of athree-dimensional Lagrangian stochastic dispersion modelapplying backward trajectories with the results of ananalytical footprint model by Kormann and Meixner.The comparison is performed for varying stability regimesof the surface layer as well as for different measurementheights. In general, excellent correspondence is found.  相似文献   

5.
The flux footprint, that is the contribution per unit emission from each element of the upwind surface area to measurement of the vertical flux of a passive scalar, is calculated for fluxes estimated by micrometeorological profile techniques. It is found that the upwind extent of the footprint for concentration-profile flux estimates is similar to that of the footprint for eddy-covariance flux measurements, when the eddy-covariance measurement is made at a height equal to the arithmetic mean of the highest and lowest profile measurement heights for stable stratification or the geometric mean for unstable stratification. The concentration-profile flux footprint depends on the ratio of the highest to the lowest measurement height, but is insensitive to the number of measurement levels. The concentration-profile flux footprint extends closer to the measurement location than does the 'equivalent eddy-covariance flux footprint, and the difference becomes more pronounced as the ratio of the profile measurement heights increases. The flux footprint for the Bowen-ratio technique is identical to that for a two-level profile measurement only for very limited circumstances. In the more general case, a flux footprint cannot be defined for the Bowen-ratio technique and the uniform upwind fetch required for representative flux measurements depends on the specific spatial distribution of surface fluxes.  相似文献   

6.
Aerodynamic roughness length (z0m is a key factor in surface flux estimations with remote sensing algorithms and/or land surface models. This paper calculates z0m over several land surfaces, with 3 years of experimental data from Xiaotangshan. The results show that z0m is direction-dependent, mainly due to the heterogeneity of the size and spatial distribution of the roughness elements inside the source area along different wind directions. Furthermore, a heuristic parameterization of the aerodynamic roughness length for heterogeneous surfaces is proposed. Individual z0m over each surface component (patch) is calculated firstly with the characteristic parameters of the roughness elements (vegetation height, leaf area index, etc.), then z0m over the whole experimental field is aggregated, using the footprint weighting method.  相似文献   

7.
The bulk aerodynamic formulation over heterogeneous surfaces   总被引:5,自引:2,他引:3  
This interpretative literature survey examines problems with application of the bulk aerodynamic method to spatially averaged fluxes over heterogeneous surfaces. This task is approached by tying together concepts from a diverse range of recent studies on subgrid parameterization, the roughness sublayer, the roll of large inactive boundary-layer eddies, internal boundary-layer growth, the equilibrium sublayer, footprint theory and the blending height. Although these concepts are not completely compatible, qualitative scaling arguments based on these concepts lead to a tentative unified picture of the qualitative influence of surface heterogeneity for a wide spectrum of spatial scales.Generalization of the velocity scale is considered to account for nonvanishing heat and moisture fluxes in the limit of vanishing time-averaged wind speed and to account for the influence of subgrid mesoscale motions on the grid-averaged turbulent flux. The bulk aerodynamic relationship for the heat flux usually employs the surface radiation temperature or, equivalently, the temperature from the modelled surface energy budget. The corresponding thermal roughness length is quite variable and its dependence on available parameters is predictable only in special cases.An effective transfer coefficient to relate the spatially averaged surface fluxes to spatially averaged air-ground differences of temperature and other scalars can be most clearly defined when the blending height occurs below the reference level (observational level or first model level). This condition is satisfied only for surface heterogeneity occurring over horizontal scales up to a few times the boundary-layer depth, depending on the stability and height of the reference level. For surface heterogeneity on larger scales (small mesoscale), an effective transfer coefficient for the spatially averaged flow must be defined, for which predictive schemes are unavailable. For surface variations on large mesoscales, homogeneous subareas may be maintained where traditional similarity theory is locally applicable. Surface variations on these scales may generate thermally-driven mesoscale motions.  相似文献   

8.
We develop a parameterisation for the effective roughness length of terrain that consists of a repeating sequence of patches, in which each patch is composed of strips of two roughness types. A numerical model with second-order closure in the turbulent stress is developed and used to show that: (i) the normalised Reynolds stress develops as a self-similar profile; (ii) the mixing-length parameterisation is a good first-order approximation to the Reynolds stress. These findings are used to characterise the blending layer, where the stress adjusts smoothly from its local surface value to its effective value aloft. Previous studies have assumed that this adjustment occurs abruptly at a single level, often called the blending height. The blending layer is shown to be characterised by height scales that arise naturally in linear models of surface layer flow over roughness changes, and calculations with the numerical model show that these height scales remain appropriate in the nonlinear regime. This concept of the blending layer allows the development of a new parameterisation of the effective roughness length, which gives values for the effective roughness length that are shown to compare well with both atmospheric measurements and values determined from the second-order model.  相似文献   

9.
10.
Measurements of fluxes and profiles of wind andtemperature are performed in the roughness layer ofa moderately homogeneous forest location. Weinvestigate to what extent vertical scalar fluxescan be derived from profile measurements. Theinfluence of inhomogeneities in the upwind terrainis investigated with footprint analysis and with aninhomogeneous surface-layer model. Four methods toestimate displacement height are suggested, amongthem is a method involving the structure parameterof the vertical wind. All methods give a decrease ofdisplacement height with increasing wind speed,while roughness length is found to increase withincreasing wind speed. For near-neutral conditionsdimensionless temperature gradients are found to besubstantially lower than the surface-layer valuesfound in the literature for homogeneous terrain with lowvegetation. Dimensionless shear however iscomparable with the surface-layer value. The heightof the roughness layer is 20 times the roughnesslength. Two schemes with locally derived surfaceparameters are tested to derive friction velocityand sensible heat flux from the profilemeasurements. These site specific schemes performsatisfactorily. A third scheme based on surface parameters chosen a priorifrom the literatureperforms significantly worse especially for low windspeed and unstable cases.  相似文献   

11.
Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Høvsøre (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50–80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200–300 m and considering only wind speeds above 3 m s?1 at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.  相似文献   

12.
The Stable Atmospheric Boundary Layer over an Antarctic ice Sheet   总被引:1,自引:1,他引:0  
Turbulence measurements up to 11-m height and longterm profile measurements up to 45-m height performed at the German Neumayer Station in Antarctica are used to investigate different components of turbulence closure schemes of the stable boundary layer. The results confirm the linear relationships for the universal functions of momentum and heat exchange in the stability range z/L < 0.8 ... 1, whereas the local scaling approach should be used above the surface layer. Furthermore, boundary-layer heights below 50 m are frequently observed at this coastal Antarctic site, mainly due to the influence of stability above the boundary layer. It is shown that the inclusion of this stability into parametrization relations is necessary to provide realistic equilibrium heights of the stable boundary layer. Two relations, based on different physical approaches, were successfully applied for the parametrization of the equilibrium height.  相似文献   

13.
Bulk Formulation of the Surface Heat Flux   总被引:1,自引:1,他引:1  
An interpretive literature survey examines different approachesfor applying the bulk aerodynamic formulato predict the surface heat flux. The surface heat flux is often predicted in terms of the surface radiation temperature, which is also used to predict the upward longwave radiation and the heat flux into the soil. In models, the thermal roughness length based on the surface radiation temperature (radiometric roughness length) is often specified to be smaller than the roughness length for momentum for a number of distinct reasons. The definition of the radiometric roughness length depends on the way that the surface temperature is measured, the choice of stability functions and displacement height and inclusion of any additional resistances.Using airborne eddy correlation data collected over eight different sites including bare soil, crops and grassland and several types of forests, the radiometric roughness length is found to vary by orders of magnitude in a manner that is difficult to formulate. Alternatively, we evaluate the approach where the thermal roughness length is equated with the better behaved roughness length for momentum and the corresponding aerodynamic surface temperature is modelled in terms of the surface radiation temperature, solar radiation, and vegetation index. The influence of wind speed and soil moisture on the difference between the aerodynamic and surface radiation temperatures is also examined.  相似文献   

14.
Summary Long-term flux measurement sites are often characterized by a heterogeneous terrain, which disagrees with the fundamental theoretical assumptions for eddy-covariance measurements. An evaluation procedure to assess the influence of terrain heterogeneity on the data quality has been developed by G?ckede et al. (2004), which combines existing quality assessment tools for flux measurements with analytic footprint modeling. In addition to micrometeorological input data, this approach requires information defining the land use structure and the roughness of the surrounding terrain. The aim of this study was to improve the footprint based site evaluation approach by using high-resolution land use maps derived by Landsat ETM+ and ASTER satellite data. The influence of the grid resolution of the maps on the results was examined, and four different roughness length classification schemes were tested. Due to numerical instabilities of the analytic footprint routine, as an additional footprint model a Lagrangian stochastic footprint routine (Rannik et al., 2003) was employed. Application of the approach on two German FLUXNET sites revealed only weak influence of the characteristics of the land use data when the land use structure was homogeneous. For a more heterogeneous site, use of the more detailed land use maps derived by remote sensing methods resulted in distinct differences indicating the potential of remote sensing for improving the flux measurement site evaluation.  相似文献   

15.
We examine vertical and horizontal diffusion of a passive scalar puff from a surface point source in a convective boundary layer (CBL). Numerical results are presented from a large-eddy simulation (LES) with embedded subgrid Lagrangian particle simulation (LPS). There is good agreement in most respects with previous laboratory and numerical studies. Analytical approximations for the concentration, horizontal flux and vertical flux are found to work reasonably well; they are based on the assumption that the concentration follows a Gaussian function in the horizontal and vertical, and that the dimensionless width and height scales of the puff follow simple functions of time. Fluxes and concentration gradients are related through a continuity relationship, without the need for an eddy diffusivity assumption. The instantaneous, point-source fields can be integrated for any source geometry. We compare predictions from the LES/LPS model for a sinusoidal surface flux with previous results from an LES with sinusoidal buoyancy flux and confirm that the buoyancy perturbations diffuse like a passive scalar. We also consider a continuous point source and derive footprint functions for vertical flux measurements above the surface layer.  相似文献   

16.
In the roughness sublayer (RSL), Monin–Obukhov surface layer similarity theory fails. This is problematic for atmospheric modelling applications over domains that include rough terrain such as forests or cities, since in these situations numerical models often have the lowest model level located within the RSL. Based on empirical RSL profile functions for momentum and scalar quantities, and scaling the height with the RSL height z *, we derive a simple bulk transfer relation that accounts for RSL effects. To verify the validity of our approach, these relations are employed together with wind speed and temperature profiles measured over boreal forest during the BOREAS experimental campaign to estimate momentum and heat fluxes. It is demonstrated that, when compared with observed flux values, the inclusion of RSL effects in the transfer relations yields a considerable improvement in the estimated fluxes.  相似文献   

17.
We examine the performance of several methods to estimate meteorological inputs for modelling dispersion in urban areas during convective conditions. Sensible heat flux, surface friction velocity and turbulent velocities are estimated from measurements of mean wind speed and the standard deviation of temperature fluctuations at a single level on a tower at two suburban sites and at one urban site in Riverside, California. These estimates are compared with observations made at these sites during a field study conducted in 2007. The sensible heat flux is overestimated in the urban area, while it is underestimated at a suburban site when temperature fluctuations are used in the free convection formulation to estimate heat flux. The bias in heat flux estimates can be reduced through a correction that depends on stability. It turns out that the bias in heat flux estimates has a minor effect on the prediction of surface friction velocity and turbulent velocities. Estimates of sensible heat flux, surface friction velocity and turbulent velocities are sensitive to estimates of aerodynamic roughness length, and we suggest estimating the aerodynamic roughness length through detailed micrometeorological measurements made during a limited field study. An examination of the impact of the uncertainty in estimating surface micrometeorology on concentrations indicates that, at small distances from a surface release, ground-level concentrations computed using estimates of heat flux and surface friction compare well with the those based on observed values: the bias is small and the 95% confidence interval of the ratio of the two concentrations is 1.7. However, at distances much larger than the Obukhov length, this confidence interval is close to 2.3 because errors in both friction velocity and heat flux affect plume spread. Finally, we show that using measurements of temperature fluctuations in estimating heat flux is an improvement on that based on the surface energy balance, even when net radiation measurements are available.  相似文献   

18.
We investigated the flux footprints of receptors at different heights in the convective boundary layer (CBL). The footprints were derived using a forward Lagrangian stochastic (LS) method coupled with the turbulent fields from a large-eddy simulation model. Crosswind-integrated flux footprints shown as a function of upstream distances and sensor heights in the CBL were derived and compared using two LS particle simulation methods: an instantaneous area release and a crosswind linear continuous release. We found that for almost all sensor heights in the CBL, a major positive flux footprint zone was located close to the sensor upstream, while a weak negative footprint zone was located further upstream, with the transition band in non-dimensional upwind distances −X between approximately 1.5 and 2.0. Two-dimensional (2D) flux footprints for a point sensor were also simulated. For a sensor height of 0.158 z i, where z i is the CBL depth, we found that a major positive flux footprint zone followed a weak negative zone in the upstream direction. Two even weaker positive zones were also present on either side of the footprint axis, where the latter was rotated slightly from the geostrophic wind direction. Using CBL scaling, the 2D footprint result was normalized to show the source areas and was applied to real parameters obtained using aircraft-based measurements. With a mean wind speed in the CBL of U = 5.1 m s−1, convective velocity of w * = 1.37 m s−1, CBL depth of z i = 1,000 m, and flight track height of 159 m above the surface, the total flux footprint contribution zone was estimated to range from about 0.1 to 4.5 km upstream, in the case where the wind was perpendicular to the flight track. When the wind was parallel to the flight track, the total footprint contribution zone covered approximately 0.5 km on one side and 0.8 km on the other side of the flight track.  相似文献   

19.
涡动相关仪和大孔径闪烁仪观测通量的空间代表性   总被引:13,自引:3,他引:10       下载免费PDF全文
在对涡动相关仪和大孔径闪烁仪足迹模型进行敏感性分析的基础上,利用北京密云站2006年8月至2007年12月期间的观测资料,应用足迹模型对观测通量的空间代表性做了初步的分析.结果表明:涡动相关仪和大孔径闪烁仪的源区对风向、Monin-Obukhov长度,空气动力学粗糙度和观测高度/有效高度等因子比较敏感.密云站涡动相关仪的源区白天主要分布在仪器的西南与南面,而夜间则在东北与北面.大孔径闪烁仪的源区为西南一东北向分布.涡动相关仪各月源区形状不同,但大致分布在南北长1000 m、东两宽850 m的范嗣内,而LAS各月源区为西南一东北向分布,长约2060 m,最宽处约为620 m.对涡动相关仪通量有贡献的下垫面主要为园地(67%)和耕地(19%).其中园地的通量贡献比例在夏、秋季比较大,冬、春季稍小,而耕地则相反.大孔径闪烁仪的主要通量贡献源区为园地、耕地和居民地,通量贡献比例分别为49%,28%和11%.其中园地和耕地通量贡献率的变化趋势与涡动相关仪的观测结果一致,但没有涡动相关仪的变化明显.  相似文献   

20.
A stochastic trajectory model was used to estimate scalar fluxfootprints in neutral stabilityfor canopies of varying leaf area distributions andleaf area indices. An analytical second-order closure model wasused to predict mean wind speed, second moments and the dissipationrate of turbulent kinetic energy within a forest canopy.The influence of source vertical profile on the flux footprint wasexamined. The fetch is longer for surface sourcesthan for sources at higher levels in the canopy. In order tomeasure all the flux components, and thus the total flux, with adesired accuracy, sources were located at the forest floor in thefootprint function estimation. The footprint functions werecalculated for five observation levels above the canopy top. Itwas found that at low observation heights both canopy density andcanopy structure affect the fetch. The higher abovethe canopy top the flux is measured, the more pronounced is the effectof the canopy structure. The forest fetch for flux measurements isstrongly dependent on the required accuracy: The 90% flux fetchis greater by a factor of two or more compared to the 75% fetch. Theupwind distance contributing 75% of flux is as large as 45 timesthe difference between canopy height and the observation heightabove the canopy top, being even larger for low observationlevels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号