首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using Temperature Fluctuation Measurements to Estimate Meteorological Inputs for Modelling Dispersion During Convective Conditions in Urban Areas
Authors:Wenjun Qian  Marko Princevac  Akula Venkatram
Institution:(1) KNMI, Wilhelminalaan 10, 3732 GK De Bilt, Netherlands,;(2) Meteorology and Air Quality Section, Wageningen University, Duivendaal 2, 6702 AP Wageningen, Netherlands,;(3) Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Department of Environmental Geo-Sciences, De Boelelaan 1085, 1801 HV Amsterdam, Netherlands,
Abstract:We examine the performance of several methods to estimate meteorological inputs for modelling dispersion in urban areas during convective conditions. Sensible heat flux, surface friction velocity and turbulent velocities are estimated from measurements of mean wind speed and the standard deviation of temperature fluctuations at a single level on a tower at two suburban sites and at one urban site in Riverside, California. These estimates are compared with observations made at these sites during a field study conducted in 2007. The sensible heat flux is overestimated in the urban area, while it is underestimated at a suburban site when temperature fluctuations are used in the free convection formulation to estimate heat flux. The bias in heat flux estimates can be reduced through a correction that depends on stability. It turns out that the bias in heat flux estimates has a minor effect on the prediction of surface friction velocity and turbulent velocities. Estimates of sensible heat flux, surface friction velocity and turbulent velocities are sensitive to estimates of aerodynamic roughness length, and we suggest estimating the aerodynamic roughness length through detailed micrometeorological measurements made during a limited field study. An examination of the impact of the uncertainty in estimating surface micrometeorology on concentrations indicates that, at small distances from a surface release, ground-level concentrations computed using estimates of heat flux and surface friction compare well with the those based on observed values: the bias is small and the 95% confidence interval of the ratio of the two concentrations is 1.7. However, at distances much larger than the Obukhov length, this confidence interval is close to 2.3 because errors in both friction velocity and heat flux affect plume spread. Finally, we show that using measurements of temperature fluctuations in estimating heat flux is an improvement on that based on the surface energy balance, even when net radiation measurements are available.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号