首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Groundwater recharge and discharge in the Akesu alluvial plain were estimated using a water balance method. The Akesu alluvial plain (4842 km2) is an oasis located in the hyperarid Tarim River basin of central Asia. The land along the Akesu River has a long history of agricultural development and the irrigation area is highly dependent on water withdrawals from the river. We present a water balance methodology to describe (a) surface water and groundwater interaction and (b) groundwater interaction between irrigated and non‐irrigated areas. Groundwater is recharged from the irrigation system and discharged in the non‐irrigated area. Uncultivated vegetation and wetlands are supplied from groundwater in the hyperarid environment. Results show that about 90% of groundwater recharge came from canal loss and field infiltration. The groundwater flow from irrigated to non‐irrigated areas was about 70% of non‐irrigated area recharge and acted as subsurface drainage for the irrigation area. This desalinated the irrigation area and supplied water to the non‐irrigated area. Salt moved to the non‐irrigation area following subsurface drainage. We conclude that the flooding of the Akesu River is a supplemental groundwater replenishment mechanism: the river desalinates the alluvial plain by recharging fresh water in summer and draining saline regeneration water in winter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Reliable estimates of groundwater recharge are required for the sustainable management of surface and ground water resources in semi‐arid regions particularly in irrigated regions. In this study, groundwater recharge was estimated for an irrigated catchment in southeast Australia using a semi‐distributed hydrological model (SWAT). The model was calibrated under the dry climatic conditions for the period from August 2002 to July 2003 using flow and remotely sensed evapotranspiration (ET). The model was able to simulate observed monthly drain flow and spatially distributed remotely sensed ET. Recharge tended to be higher for irrigated land covers, such as perennial pasture, than for non‐irrigated land. On average, the estimated annual catchment recharge ranged between 147 and 289 mm which represented about 40% of the total rainfall and irrigation inputs. The optimized soil parameters indirectly reflected flow bypassing the soil matrix that could be responsible for this substantial amount of recharge. Overall, the estimated recharge was much more than that previously estimated for the wetter years. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Groundwater Recharge at Five Representative Sites in the Hebei Plain,China   总被引:4,自引:0,他引:4  
Accurate estimates of groundwater recharge are essential for effective management of groundwater, especially when supplies are limited such as in many arid and semiarid areas. In the Hebei Plain, China, water shortage is increasingly restricting socioeconomic development, especially for agriculture, which heavily relies on groundwater. Human activities have greatly changed groundwater recharge there during the past several decades. To obtain better estimates of recharge in the plain, five representative sites were selected to investigate the effects of irrigation and water table depth on groundwater recharge. At each site, a one‐dimensional unsaturated flow model (Hydrus‐1D) was calibrated using field data of climate, soil moisture, and groundwater levels. A sensitivity analysis of evapotranspirative fluxes and various soil hydraulic parameters confirmed that fine‐textured surface soils generally generate less recharge. Model calculations showed that recharge on average is about 175 mm/year in the piedmont plain to the west, and 133 mm/year in both the central alluvial and lacustrine plains and the coastal plain to the east. Temporal and spatial variations in the recharge processes were significant in response to rainfall and irrigation. Peak time‐lags between infiltration (rainfall plus irrigation) and recharge were 18 to 35 days in the piedmont plain and 3 to 5 days in the central alluvial and lacustrine plains, but only 1 or 2 days in the coastal plain. This implies that different time‐lags corresponding to different water table depths must be considered when estimating or modeling groundwater recharge.  相似文献   

5.
Environmental tracers, such as tritium, have generally been used to estimate aquifer recharge under natural conditions. A tritium tracer test is presented for estimating recharge under semi‐arid and irrigated conditions. The test was performed along 429 days (June 2007–August 2008) on an experimental plot located in SE Spain with drip irrigation and annual row crops (rotation of lettuce and melon), in which common agricultural practices were followed in open air. Tritiated water was sprinkled (simulated rainfall) over the plot, soil cores were taken at different depths and a liquid scintillation analyzer was used to measure tritium concentration in soil water samples. Tritium transport, as liquid or vapor phase, was simulated with the one‐dimensional numerical code SOLVEG. Simulations show that the crop water use was below potential levels, despite regular irrigation. Continuous high water content in soil promoted a great impact of rainfall events on the aquifer recharge. The results obtained from tritium tracer test have been compared with other independent recharge assessment, soil water balance method, to evaluate the reliability of the first one. Total recharge from tracer test was 476 mm for the October 2007–September 2008 period versus 561 mm from soil water balance method for the same period, which represents 37.1% and 43.7% of the applied water (1284 mm, irrigation + precipitation), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Groundwater recharge studies in semi‐arid areas are fundamental because groundwater is often the only water resource of importance. This paper describes the water balance method of groundwater recharge estimation in three different hydro‐climatic environments in eastern Mediterranean, in northwest Greece (Aliakmonas basin/Koromilia basin), in Cyprus (Kouris basin and Larnaka area) and in Jordan (northern part of Jordan). For the Aliakmonas basin, groundwater recharge was calculated for different sub‐catchments. For the Upper Aliakmonas basin (Koromilia basin), a watershed‐distributed model was developed and recharge maps were generated on a daily basis. The mean annual recharge varied between 50 and 75 mm/year (mean annual rainfall 800 mm/year). In Cyprus, the mean groundwater recharge estimates yielded 70 mm/year in the Kouris basin. In the Larnaka area, groundwater recharge ranged from 30 mm/year (lowland) to 200 mm/year (mountains). In Jordan, the results indicated recharge rates ranging from 80 mm/year for very permeable karstified surfaces in the upper part of the Salt basin, where rainfall reaches 500 mm/year to less than 10 mm/year and to only about 1 mm/year in the southernmost part of the basin. For the north part of Jordan, a watershed‐distributed model was developed and recharge maps were generated. This water balance model was used for groundwater recharge estimations in many regions with different climatic conditions and has provided reliable results. It has turned out to be an important tool for the management of the limited natural water resources, which require a detailed understanding of regional hydro(geo)logical processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Quantifying of direct recharge derived from precipitation is crucial for assessing sustainability of well‐irrigated agriculture. In the North China Plain, the land use is dominated by groundwater‐irrigated farmland where the direct recharge derived from precipitation and irrigation. To characterize the mean rate and historical variance of direct recharge derived from precipitation, unsaturated zone profiles of chloride and δ18O in the dry river bed of the Beiyishui River were employed. The results show that archival time scale of the profile covers the duration from 1980 to 2002 (corresponding to depths from 5 to 2 m) which is indicated by matching the δ18O peaks in the isotope profile with the aridity indexes gained by instrumental records of annual precipitation and annual potential evaporation. Using the chloride mass balance method, the mean rate of the direct recharge corresponding to the archival time scale is estimated to be 3·8 ± 0·8 mm year?1, which accounts for about 0·7% of the long‐term average annual precipitation. Further, the direct recharge rates vary from 2·1 to 6·8 mm year?1 since 1980. Despite the subhumid climate, the estimate of recharge rates is in line with other findings in semiarid regions. The low rate of direct recharge is considered as a result of the relative dry climate in recent decades. In dry river bed, unsaturated zone profiles of chloride and δ18O combined with instrumental records could offer valuable information about the direct recharge derived from precipitation during droughts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Understanding recharge mechanisms and controls in karst regions is extremely important for managing water resources because of the dynamic nature of the system. The objective of this study was to evaluate water percolation through epikarst by monitoring water flow into a cave and conducting artificial irrigation and tracer experiments, at Sif Cave in Wadi Sussi, Israel from 2005 through 2007. The research is based on continuous high‐resolution direct measurements of both rainfall and water percolation in the cave chamber collected by three large PVC sheets which integrate drips from three different areas (17, 46, and 52 m2). Barrels equipped with pressure transducers record drip rate and volume for each of the three areas. The combined measured rainfall and cave data enables estimation of recharge into the epikarst and to better understand the relationship of rainfall‐recharge. Three distinct types of flow regimes were identified: (1) ‘Quick flow’ through preferential flow paths (large fractures and conduits); (2) ‘Intermediate flow’ through a secondary crack system; and (3) ‘Slow flow’ through the matrix. A threshold of ~100 mm of rain at the beginning of the rainy season is required to increase soil water content allowing later rainfall events to percolate deeper through the soil and to initiate dripping in the cave. During winter, as the soil water content rises, the lag time between a rain event and cave drip response decreases. Annual recharge (140–160 mm in different areas in the cave) measured represents 30–35% of annual rainfall (460 mm). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
《水文科学杂志》2013,58(5):961-973
Abstract

A study was carried out to investigate the use of the chloride profile method in conjunction with the water balance method to estimate the annual groundwater recharge in both natural and irrigation sites in Luanjing Irrigation Area, Inner Mongolia. Groundwater recharge from precipitation, estimated by the chloride profile method, is less than 0.1 mm year?1 which accounts for just 0.06% of the long-term average annual rainfall, indicating that rainfall presently plays a minor role in the groundwater recharge. It appears that recharge events only occurred after heavy rain or sustained rainfall events. In the cropped area, the chloride profile method indicated that the average annual recharge is 268 mm year?1 with an infiltration rate of 32.5%, which is reasonably consistent with the 33.1% obtained by the water balance method in 2007. The study shows that about one third of that water is discharged back to the groundwater.  相似文献   

10.
The paper describes a hydrological model for agricultural water intervention in a community watershed at Kothapally in India, developed through integrated management and a consortium approach. The impacts of various soil and water management interventions in the watershed are compared to no‐intervention during a 30‐year simulation period by application of the calibrated and validated ARCSWAT 2005 (Version 2.1.4a) modelling tool. Kothapally receives, on average, 800 mm rainfall in the monsoon period. 72% of total rainfall is converted as evaporation and transpiration (ET), 20% is stored by groundwater aquifer, and 8% exported as outflow from the watershed boundary in current water interventions. ET, groundwater recharge and outflow under no‐intervention conditions are found to be 64, 9, and 19%, respectively. Check dams helped in storing water for groundwater recharge, which can be used for irrigation, as well minimising soil loss. In situ water management practices improved the infiltration capacity and water holding capacity of the soil, which resulted in increased water availability by 10–30% and better crop yields compared to no‐intervention. Water outflows from the developed watershed were more than halved compared to no‐intervention, indicating potentially large negative downstream impacts if these systems were to be implemented on a larger scale. On the other hand, in the watershed development program, sediment loads to the streams were less than one‐tenth. It can be concluded that the hydrological impacts of large‐scale implementation of agricultural water interventions are significant. They result in improved rain‐fed agriculture and improved productivity and livelihood of farmers in upland areas while also addressing the issues of poverty, equity, and gender in watersheds. There is a need for case‐specific studies of such hydrological impacts along with other impacts in terms of equity, gender, sustainability, and development at the mesoscale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   

12.
A recharge model for high altitude,arid, Andean aquifers   总被引:1,自引:0,他引:1  
John Houston 《水文研究》2009,23(16):2383-2393
Evidence for groundwater recharge in arid zones is mounting, despite early ideas that recharge was unlikely where evaporation greatly exceeded precipitation. The mechanisms and magnitude of groundwater recharge in the Andes and Atacama Desert are not well known but the subject of current research. Diffuse recharge is expected to be limited to high altitude areas with coarse‐grained soils devoid of vegetation. A recharge model for this environment is developed based on a simple soil moisture budgeting technique and the calculation of actual evaporation based on empirical studies. The model is run with data for the Linzor basins, over 4000 m elevation at 22·2°S on the west slope of the Andes. It is checked against independent estimates based on the chloride mass balance (CMB) method and flood events measured downstream in the Río Salado and found to provide robust and reliable results. The results indicate that irregular and volumetrically limited amounts of diffuse recharge occur at high elevations in half of all years, with a tendency to cluster during La Niña episodes. For the Linzor Basins, mean annual recharge is found to be equivalent to 28 mm a?1, although no recharge occurs in years with precipitation less than 120 mm, and increases proportionately with annual rainfall amounts above this limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A combination of micro-meteorological, soil physical and groundwater chemical methods enabled the water balance of a tropical eucalypt savanna ecosystem in Northern Australia to be estimated. Heat pulse and eddy correlation were used to determine overstory and total evapotranspiration, respectively. Measurements of soil water content, matric suction and water table variations were used to determine changes in soil moisture storage throughout the year. Groundwater dating with chlorofluorocarbons was used to estimate net groundwater recharge rates, and stream gauging was used to determine surface runoff. The wet season rainfall of 1585 mm is distributed as: evapotranspiration 810 mm, surface runoff (and shallow subsurface flow) into the river 410 mm, groundwater recharge 200 mm and increase in soil store 165 mm. Of the groundwater recharge, 160 mm enters the stream as baseflow in the wet season, 20 mm enters as baseflow in the dry season, and the balance (20 mm) is distributed to and used by minor vegetation types within the catchment or discharges to the sea. In the dry season, an evapotranspiration of 300 mm comprises 135 mm rainfall and 165 mm from the soil store. Because of the inherent errors of the different techniques, the water balance surplus (estimated at 20 mm) cannot be clearly distinguished from zero. It may also be as much as 140 mm. To our knowledge, this is the first time that such diverse methods have been combined to estimate all components of a catchment's water balance.  相似文献   

15.
The development of intense agriculture in semiarid areas modifies intensity and spatial distribution of groundwater recharge by summing irrigation return flow to limited rainfall infiltration. Environmental tracers provide key information, but their interpretation is complicated by more complex groundwater flow patterns. In multilayered aquifers, the real origin of the groundwater samples is hard to assess because of local mixing processes occurring inside long‐screened boreholes. We use environmental tracers (14C, 13C, 2H, 18O, 3H) to investigate the long‐term evolution of recharge in the five‐layer Campo de Cartagena aquifer in South‐Eastern Spain, in addition to high‐resolution temperature loggings to identify the depth of origin of groundwater. Despite the complex background, this methodology allowed a reliable interpretation of the geochemistry and provided a better understanding of the groundwater flow patterns. The tritium method did not give good quantitative results because of the high variability of the recharge signal but remained an excellent indicator of recent recharge. Nonetheless, both pre‐anthropization and post‐anthropization recharge regime could be identified and quantified by radiocarbon. Before the development of agriculture, recharge varied from 17 mm.year‐1 at the mountain ranges to 6 mm.year‐1 in the plain, whereas the mean annual rainfall is about 300 mm. In response to the increase of agricultural activity, recharge fluxes to the plain were amplified and nowadays reach up to 210 mm.year‐1 in irrigated areas. These values are strengthened by global water budget and local unsaturated zone studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The chloride mass balance (CMB) method is widely used to estimate long-term rates of groundwater recharge. In regions where surface water runoff is negligible, recharge can be estimated using measurements of chloride concentrations of groundwater and precipitation, and an estimate of long-term average rainfall. This paper presents the Chloride Mass Balance Estimator of Australian Recharge (CMBEAR), a Jupyter (Python) Notebook that is set up to rapidly apply the CMB method using gridded maps of chloride deposition rates across the Australian continent. For an Australian context, the chloride deposition rate and rainfall maps have been provided. Thus, CMBEAR requires only a spreadsheet with the groundwater chloride concentration, the latitude and longitude of the sample location, and some simple user inputs. CMBEAR may be easily applied in other regions, providing that a gridded chloride deposition map is available. Recharge estimates from CMBEAR are compared against published applications of the CMB method. CMBEAR is also applied to a large dataset from the Northern Territory and is used to produce a gridded map of recharge for western Victoria. CMBEAR provides a reproducible and straightforward approach to apply the CMB method to estimate groundwater recharge.  相似文献   

17.
18.
Ali Subyani  Zekai en 《水文研究》2006,20(20):4373-4380
The rainfall and infiltration elements of the hydrological cycle in arid regions are characterized by temporal and spatial variations that are random and sporadic. Consequently, the chloride concentration in rainfall has a similar behaviour. Despite this, the classical chloride mass balance (CMB) approach only employs arithmetic and weighted averages for recharge estimation. In this paper, the classical CMB method is modified by taking into account some perceived deficiencies in the methodology. The modified CMB method takes into consideration additional statistical parameters, namely variances and the correlation coefficient between variables concerned based on the application of the perturbation method. Strategic aquifer planning in the Kingdom of Saudi Arabia requires a quick method for estimating groundwater recharge in order to determine the temporal management of available water resources. To demonstrate the difference between the classical and the refined CMB methods, both were applied to a representative basin, i.e. Wadi Yalamlam, in the western part of Saudi Arabia. Based on the refined calculations, recharge to groundwater is found to be 11% of the effective annual rainfall. This refined method provides higher recharge rates because it takes into account the actual variability in the variables concerned and can, thus, improve the accuracy of future groundwater recharge estimation studies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

20.
A previously published regional groundwater‐flow model in north‐central Nebraska was sequentially linked with the recently developed soil‐water‐balance (SWB) model to analyze effects to groundwater‐flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater‐level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root‐mean‐squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB‐generated recharge, the RMS difference between simulated and estimated base‐flow target values for the groundwater‐flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater‐level and base‐flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号