首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
后石湖山杂岩体是与垮塌破火山口有关的碱性环状杂岩体, 主要由呈环形分布的碱性火山岩、环状岩墙(斑状石英正长岩)、嵌套的中心复式岩株(晶洞碱长花岗岩和斑状碱长花岗岩)和锥状岩席(石英正长斑岩和花岗斑岩)组成.LA-ICPMS锆石U-Pb年代学分析表明, 斑状石英正长岩环状岩墙、石英正长斑岩和花岗斑岩锥状岩席的侵位年龄分别为119±3Ma、121±2Ma和121±2Ma.该环状杂岩体火山岩与侵入岩的形成年龄相近, 体现了它作为火山-侵入杂岩体的特征.斑状石英正长岩富碱(Na2O+K2O=10.0%~10.5%), K2O含量较高(5.21%~5.42%), 具正的Eu异常(Eu/Eu*=1.05~1.40).碱长花岗岩和斑岩均具有富碱、高FeOtot/MgO、Ga/Al、Zr、Nb和REE值(Eu除外), 以及低Al2O3、CaO、MgO、Ba、Sr和Eu含量的特征, 都属于A型花岗岩质岩石.其中斑岩为铝质A型花岗岩, 具有高的初始岩浆温度(880~901℃).所有A型花岗质岩石均具有较富集的Nd同位素组成, εNd(t)值变化于-13.9~-12.2之间.斑状石英正长岩是下地壳中-基性麻粒岩和片麻岩部分熔融产生的熔体与幔源玄武质岩浆混合, 后又发生单斜辉石分离结晶的产物; 碱长花岗岩源于上地壳长英质岩石部分熔融产生的熔体与幔源玄武质岩浆混合, 随后经历长石的分离结晶作用而成; 斑岩是受幔源岩浆底侵加热的上地壳长英质岩石的部分熔融产生的熔体, 并经历了长石的分离结晶作用而产生.该环状杂岩体的形成过程可以概括为: (1)火山爆炸性喷发形成大量的碱性火山熔岩和火山碎屑岩; (2)地下岩浆房空虚导致压力下降, 其顶板围岩失稳而沿火山口周围近直立的环状断裂垮塌, 形成塌陷的破火山口.与此同时, 下覆岩浆房的岩浆被动挤入环状断裂而形成斑状石英正长岩环状岩墙; (3)浅部地壳的长英质岩浆房过压, 促使其高温过碱质A型花岗质岩浆上升侵位形成了中心的斑状碱长花岗岩岩株, 这些岩浆的上涌导致上覆围岩产生倾角中-陡的、内倾的锥状裂隙, 为石英正长斑岩锥状岩席侵位提供了空间; (4)浅部岩浆房复活, 高温过碱质A型花岗质岩浆再度上升侵位形成被嵌套的晶洞碱长花岗岩岩株.同样, 这种岩浆的再度上侵导致上覆围岩产生了倾角较陡而内倾的锥状裂隙, 为花岗斑岩锥状岩席提供了侵位空间.后石湖山碱性环状杂岩体的形成是华北东部早白垩世与克拉通破坏相关的伸展构造体制下的产物, 这种构造体制可能与古太平洋板块的俯冲作用有关.   相似文献   

2.
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.  相似文献   

3.
Thirty-one plugs of alkaline volcanic rocks of Cenozoic age (37 Ma in mean) occur in the Upper Benue valley, northern Cameroon (Central Africa). The complete alkaline series (alkaline basalts, hawaiites, mugearites, phonolites, trachytes and rhyolites) is represented. Basalts contain phenocrysts of olivine, Al-Ti-rich diopside, and Ti-magnetite, and hawaiites-abundant microphenocrysts of plagioclase. Mugearites have a trachytic texture and contain xenocrysts of K-feldspar, apatite, quartz and unstable biotite. Phonolites are peralkaline. Trachytes (peralkaline and non-peralkaline) and rhyolites are characterised by their sodic mineralogy with aegirine-augite, richterite, and arfvedsonite phenocrysts. There is a large compositional gap between basaltic and felsic lavas, except the mugearites. Despite this gap, major- and trace-element distributions are in favour of a co-magmatic origin for the basaltic and felsic lavas. The Upper Benue valley basalts are similar in their chemical and isotopic features to other basalts from both the continental and oceanic sectors of the Cameroon Line. The Upper Benue valley basaltic magmas (87Sr/86SrƸ.7035; k Nd=+3.9) originate from an infra-lithospheric reservoir. The Sr-Nd isotopic composition and high Sr contents of the mugearites suggest that they are related to mantle-derived magmas and that they result from the mixing, at shallow crustal levels, of a large fraction of trachytic magma with a minor amount of basaltic magma. Major-element modelling of the basalt-trachyte evolution (through hawaiite and mugearite compositions) does not support an evolution through fractional crystallization alone. The fluids have played a significant role in the felsic lavas genesis, as attested by the occurrence of F-rich minerals, calcite and analcite. An origin of the Upper Benue valley rhyolitic magmas by fractional crystallization of mantle-derived primitive magmas of basaltic composition, promoted or accompanied by volatile, halogen-rich fluid phases, may be the best hypothesis for the genesis of these lavas. These fluids also interact with the continental crust, resulting in the high Sr-isotope initial ratios (0.710) in the rhyolites, whereas the Nd isotopic composition has been less affected (k Nd=+0.4).  相似文献   

4.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

5.
幔源岩石包体研究,是认识上地幔岩石圈物质组成、幔源岩浆演化及壳幔动力学过程的重要手段。铜陵地区小铜官山石英二长闪长岩中发育有微粒闪长质包体,并且这些微粒闪长质包体中不均匀地分布着镁铁质团块,三者的形成过程可视为铜陵地区岩浆演化的缩影,为了解本区深部岩浆作用过程提供了有力的证据。在前人研究的基础上,笔者借助电子探针、扫描电镜、电镜能谱和二次飞行时间离子探针(Tof-SIMS)对产于铜陵地区微粒闪长质包体中的镁铁质团块进行了详细的研究,首次获得了一套精确的矿物化学资料和元素分布图,总结了镁铁质团块的特征,并讨论了本区的深部岩浆作用过程。矿物学研究表明,镁铁质团块中的角闪石和辉石均已发生了不同程度的透闪石化和阳起石化蚀变,蚀变过程中,从镁钙闪石到镁角闪石,再到透闪石,随着Si的增加,角闪石呈现出Mg的富集和Ti、Al贫化的特点。团块中的富Cr磁铁矿、Ti磁铁矿和少量的铝直闪石指示了其具有深源性。Tof-SIMS元素分布图显示,透闪石主要由Al、Si、Ca、Sc、V、Cr、Mn、Cu和Sr元素组成,透辉石主要由Si、Mg、Ca、Cu和Rb组成。在铜陵地区,上地幔部分熔融形成一套玄武岩浆,受岩浆底侵作用影响,玄武岩浆上侵,进入下地壳深位岩浆房,与下地壳硅镁层发生同化混染作用,形成一套轻度演化的中基性(辉长质)玄武岩浆,镁铁质团块就是这类中基性玄武岩浆直接结晶形成的。后受构造作用影响,这类中基性玄武岩浆上侵到中地壳岩浆房(12~16 km),与中地壳的变质岩系发生同化混染和结晶分异作用形成一套中性闪长质岩浆,微粒闪长质包体就是这套闪长质岩浆发生结晶分异作用而形成的。镁铁质团块和微粒闪长质包体清楚地解释了铜陵地区深部岩浆作用过程,并有力地证明了铜陵地区中地壳的闪长质岩浆来源于下地壳的壳幔混源岩浆。  相似文献   

6.
A型花岗岩的微量元素地球化学   总被引:28,自引:1,他引:27  
本文总结和评述了A型花岗岩典型的微量元素特征,如富集Ga、稀土元素(除Eu外)和高场强元素,亏损Ba、Sr和明显的Eu负异常。分别讨论了影响微量元素特征的多种制约因素,主要包括源区性质、岩浆的物理化学条件、岩浆作用过程和络合作用。通过对比世界范围内几个地区相伴生的碱性A型花岗岩和铝质A型花岗岩的微量元素地球化学特征,发现前者Ga、F含量更高,而轻重稀土比值小,Eu、Ba、Sr等元素含量更低,显示了前者的岩浆分异作用更强,同时说明了碱性A型花岗岩可以由与之伴生的铝质A型花岗岩分异而来。  相似文献   

7.
幔源岩浆氧化还原状态及对岩浆矿床成矿的制约   总被引:7,自引:5,他引:2  
柏中杰  钟宏  朱维光 《岩石学报》2019,35(1):204-214
岩浆的氧化还原状态是控制许多基本地质过程的关键热动力学参数之一。估算玄武质岩浆和源区岩石氧化还原状态的常用方法主要包括多价元素的价态、多价元素的分配系数、共存矿物对的化学平衡和全岩化学比值。岩石学实验的深入和分析技术手段的快速发展使精确估算岩浆氧逸度成为可能。这有力地促进了对地幔源区成分、岩浆的部分熔融程度和熔融方式与分异演化历史,以及岩浆矿床的成因机制及成矿过程的研究。幔源岩浆的氧化还原状态复杂多变,不仅与构造背景有关,还与地幔深度(压力)、交代作用和部分熔融有着密切联系。而在岩浆到达浅部地壳后,结晶分异、岩浆去气和同化混染等过程也能不同程度地改变岩浆的氧逸度。因此,即使来自同一构造背景的幔源岩浆也呈现出明显的氧逸度不均一性。氧逸度的高低对源区部分熔融过程中金属元素的地球化学行为、岩浆的分异演化趋势、Fe-Ti-V氧化物饱和时间的早晚和S在岩浆中的溶解度具有明显的控制作用。因此,岩浆的氧逸度对钒钛磁铁矿矿床和汇聚板块边缘的岩浆硫化物矿床的成矿过程具有显著的影响。  相似文献   

8.
Geological studies on saturated to oversaturated and subsolvus aegirine-riebeckite syenite bodies of the Pulikonda alkaline complex and Dancherla alkaline complex were carried out. The REE distribution of the Dancherla syenite shows a high fractionation between LREE and HREE. The absence of Eu anomaly suggests source from garnet peridotite. The Pulikonda syenite shows moderate fractionation between LREE and HREE as reflected by enrichment of HREE and moderate enrichment of LREE. The negative Eu anomaly indicates role of plagioclase fractionation.Three distinct co-eval primary magmas i.e. mafic syenite-, felsic syenite- and alkali basalt magmas — all derived from low-degrees of partial melting of mantle differentiates and enriched metasomatised lower crust played a major role in the genesis and emplacement of the syenites into overlying crust along deep seated regional scale trans-lithospheric strike-slip faults and shear zones following immediately after late-Archaean calc-alkaline arc magmatism at different time-space episodes i.e. initially at craton margin and later on into the thickened interior of the Eastern Dharwar craton. The ductile sheared and folded Pulikonda alkaline complex was evolved dominantly from the magmas derived from partial melting of lower crust and minor juvenile magmas from mantle. Differentiation and fractionation by liquid immiscibility of mafic magma and commingling-mixing of intermediate and felsic magmas followed by fractionational crystallisation under extensional tectonics during waning stages of calc-alkaline arc magmatism nearer to the craton margin were attributed as the main processes for the genesis of Pulikonda syenite complex. Commingling and limited mixing of independent mantle derived mafic and felsic syenitic magmas and accompanying fractionation resulting into soda rich and potash rich syenite variants was tentatively deduced mechanism for the origin of Dancherla, Danduvaripalle, Reddypalle syenites and other bodies belonging to Dancherla alkaline complex at the craton interior. The Peddavaduguru syenite was formed by differentiation of alkali mafic magma (gabbro to diorite) and it’s simultaneous mingling with fractionated felsic syenitic magma under incipient rift. Vannedoddi and Yeguvapalli syenites were derived due to desilicification and accompanying alkali feldspar mestasomatism of younger potash rich granites along Guntakal-Gooty fault and along Singanamala shear zone respectively.  相似文献   

9.
西准噶尔谢米斯台花岗岩研究程度偏低, 运用锆石LA-ICP-MS U-Pb年代学、地球化学及锆石Lu-Hf同位素方法研究西准谢米斯台西段地区花岗岩, 结果表明: 谢米斯台岩体(427.6±2.3 Ma)和哈勒盖特希岩体(428.6±2.5 Ma)均形成于中志留世; 谢米斯台碱长花岗岩地球化学特征类似于Ⅰ型花岗岩, 哈勒盖特希碱长花岗岩地球化学特征类似于A型花岗岩; 锆石Hf同位素组成较均一, εHf(t)=12.4~14.5, 二阶段模式年龄tDM2变化范围在497~603 Ma之间, Ⅰ型花岗岩和A2型花岗岩可能形成于后碰撞阶段的挤压-伸展转变期, 是中志留世额尔齐斯-斋桑洋壳向南俯冲至波谢库尔-成吉斯火山弧底部, 俯冲板片与岛弧底部岩石圈之间剪切带的物质发生变形、变质及部分熔融作用, 使得由亏损地幔形成不久的年轻地壳(由洋壳和岛弧组成)发生部分熔融形成的长英质岩浆经进一步分离结晶作用形成分异Ⅰ型花岗岩和高温、缺水A2型花岗岩, A2型花岗岩较Ⅰ型花岗岩分离结晶程度高.   相似文献   

10.
The Permian activity in the Oslo region started with lava effusions. Monzonitic rhomb porphyry flows predominate, with basaltic flows inbetween. Then a number of basalt volcanoes formed. This phase ended in explosive volcanism, producing ignimbrites, and the explosive activity is considered the primary cause for formation of at least four large and a few smaller cauldrons (or calderas). Below the lava surface monzonitic magma and associated syenitic and granitic magmas crystallized to larvikite, nordmarkitic and granitic rocks. These magmas are assumed to be formed by local melting of portions of the lower crust. The mode of emplacement is stoping.  相似文献   

11.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

12.
A型花岗岩对研究天山造山带壳幔相互作用和构造演化具有重要意义.对东天山哈尔里克地区的碱长花岗岩和正长花岗岩进行了详细的岩石学、地球化学和年代学研究,旨在阐明其成因及构造意义.其中碱长花岗岩的LA-ICP-MS锆石U-Pb年龄为350.7±2.0 Ma和351.8±2.0 Ma,表明该花岗岩体形成于早石炭世早期.岩石含大量碱性长石,暗色矿物以黑云母为主,见钠铁闪石等碱性暗色矿物.岩石高硅、富碱、贫钙镁,富集Rb、Th、K等大离子亲石元素和Zr、Hf等高场强元素,而强烈亏损元素Ba、Sr、Eu,具弱右倾“Ⅴ”字型的稀土分配曲线((La/Yb)N=3.23~5.55,δEu=0.19~0.28).这些矿物学和地球化学特征表明哈尔里克早石炭世花岗岩属高钾准铝质-弱过铝质花岗岩,为典型的A型花岗岩.花岗岩正的εNd(t)值(+4.2~+4.8)和新元古代的二阶段Nd模式年龄(tDM2=0.71~0.75 Ga),表明其源区可能为新生年轻地壳,源岩可能是亏损地幔来源的下地壳中基性岩和少量大洋沉积物.结合前人对东天山岩浆活动和构造环境的研究,认为早石炭世哈尔里克与博格达处于同一构造背景下,早石炭世早期A型花岗岩可能形成于博格达弧后裂谷的伸展早期阶段.   相似文献   

13.
A Paleoproterozoic A—type Rhyolite   总被引:3,自引:0,他引:3  
The rhyolites in the upper Lueliang Group of Shanxi,China,are Paleoproterozoic weakly alkaline volcanic rocks.They are characterized by high,SiO2,NaO K2O,Zr,Nd,Ga,Y and REE contents and large FeO^*/MgO,Rb/Sr and Ga/Al ratios,and low CaO,Sr and Eu contents,and share much in common with the A-type granitic rocks.They erupted in the rift setting at the continental margin.Chemical features and isotope data,as well as high Nd and low initial Sr ratios,suggest that the original granitic magma was derived from partial melting of Late Archean metamorphic rocks in the lower crust due to the influence of basaltic magma and hot fluid in response to rifting.The A-type rhyolites were finally formed after the fractional crystallization of the dominant mineral feldspar.  相似文献   

14.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   

15.
Magmatism in central Anatolia is characterized by petrographically and chemically distinct granitic and syenitic rocks. The granitic magmatism comprises C-type (crustal-derived) and H-type (hybrid) monzogranites and monzonites. Garnet-bearing C-type leucogranites represent the oldest magmatic phase, but younger hornblende ± biotite ± K-feldspar H-type plutons dominate the geology of the Central Anatolian Crystalline Complex (CACC). These typically include mafic microgranular enclaves. The granitic magmatism predates syenitic intrusions, among which quartz-bearing syenites were emplaced prior to feldspathoid-bearing ones.

The nature of magmatism in central Anatolia varies through time from peraluminous to metaluminous to alkaline. These different magma types reflect distinct stages of postcollisional magmatism, in which interaction between crust and mantle varied considerably. The C-type granites of the early stages of postcollisional magmatism were likely derived by partial melting of the lower continental crust induced by mafic magma underplating as a result of lithospheric delamination. The H-type granites and syenites of the mature and advanced stages of postcollisional magmatism indicate a significant contribution from mande-derived magma within a continuous or episodic extensional tectonic regime.  相似文献   

16.
新疆准噶尔地区也布山、庙儿沟两个晚古生代后碰撞准铝一过铝质花岗岩体中,广泛发育大量的暗色微粒闪长质包体。岩石学、矿物学、主量元素和微量元素地球化学研究表明,包体与其寄主岩存在明显的亲缘关系。东准噶尔也布山黑云母花岗岩体中的暗色微粒包体与寄主岩有相似的地球化学成分,表明它是与寄主花岗岩相同成因的同源包体,是来自上地幔的基性岩浆经过高度演化、结晶分异的产物;西准噶尔庙儿沟二长花岗岩体中含钾长石斑晶的微粒包体则主要是由幔源的下地壳基性岩部分熔融形成的残余体,被酸性岩浆携带并发生成分上的同化和混染,最后在上地壳侵位的产物。同准噶尔碱性花岗岩一样,载荷包体的准铝一过铝质花岗岩是晚古生代后碰撞阶段构造一岩浆活动的岩石类型之一,其形成和演化标志了准噶尔地区后碰撞幔源岩浆底侵作用导致大陆地壳垂向生长的过程。  相似文献   

17.
Geochemical, isotopic and age constraints support a comagmatic origin for Ghuweir Mafics and the Feinan A-type granites. The two rocks types, named collectively in this paper as the Feinan Ghuweir Magmatic Suite (FGMS), formed between 556 and 572 Ma ago according to Rb-Sr whole-rock dating. FGMS has low Sr initial ratios, which preclude a significant contribution of much older crust in the magma genesis.The FGMS has a wide range of silica contents, with a gap at 55-65 wt% SiO2. It has a transalkaline to alkaline character; belongs to the medium to high K calc-alkaline series; it ranges from metaluminous to mildly peraluminous character and belongs to the alkali and alkali-calcic series. The Feinan granites and the Ghuweir rhyolites and rhyodacites are classified as A-type granites and belong to group A2 of Eby [Eby, N.G., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic iplications. Geology 20, 641-644].According to geochemical modeling the Ghuweir Mafics were derived from a subduction modified lithospheric mantle by 10% batch modal partial melting of a phlogopite-bearing spinel lherzolite. The intra-suite geochemical variations can be ascribed to fractional crystallization of olivine, pyroxene, and plagioclase. The accumulation of apatite in the most evolved samples is responsible for the high concentrations of REE.The Feinan granites and the Ghuweir rhyolites and rhyodacites were derived from the mafic magma by the fractional crystallization of ≈78% of the original magma to the mineral assemblage olivine+pyroxene+plagioclase+magnetite. The intra-suite geochemical variations in the Feinan A-type granites are due to the fractional crystallization of the mineral phases: amphibole +Na and K-feldspar+apatite +magnetite+zircon+allanite.The FGMS correlates with time-equivalent rocks in many parts of the Arabian-Nubian Shield and the surrounding areas.  相似文献   

18.
通过对东昆仑造山带晚三叠世岩浆岩的岩石类型、形成时代、岩石地球化学和同位素地球化学资料综合分析,对岩浆岩的岩石组合、分布特征和岩石成因进行研究,探讨东昆仑造山带晚三叠世构造演化的地球动力学背景。东昆仑造山带晚三叠世是古特提斯演化过程中重要的构造转换期,岩浆岩岩石类型多样,主要包括辉长岩、花岗闪长岩、二长花岗岩和正长花岗岩,并且广泛出露具埃达克质特征的岩浆岩和A型花岗岩。晚三叠世岩浆岩的出露规模与俯冲阶段相比,规模较小,一般以小岩体、岩株和岩脉侵入于早期岩体和地层中。东昆仑晚三叠世岩浆岩主体为准铝-弱过铝质高钾钙碱性-钾玄岩系列,轻重稀土元素具有一定分异,富集大离子亲石元素,亏损高场强元素,岩石类型不同时分异程度、富集和亏损程度有一定差异。大部分晚三叠世花岗质岩浆岩的同位素特征与晚二叠世-三叠纪镁铁质岩浆岩近似,部分具有更高的εNd(t)和εHf(t)值。镁铁质岩浆岩、普通花岗岩、埃达克质岩浆岩在东昆仑各个构造带皆有分布,A型花岗岩主要分布在祁漫塔格构造带(东昆北)的阿牙克库木湖-香日德断裂附近。东昆仑晚三叠世镁铁质岩浆岩具有弧岩浆岩特征,为俯冲流体交代的地幔楔部分熔融产物。普通花岗岩和埃达克质岩浆岩多为新生下地壳部分熔融产物,少量埃达克质岩浆岩由于与地幔的交代作用,具有幔源特征。A型花岗岩为残留下地壳部分熔融的产物。部分普通花岗岩、埃达克质岩浆岩和A型花岗岩由于岩浆混合作用,具幔源特征。构造环境研究表明,东昆仑在晚三叠世进入古特提斯演化的后碰撞阶段。巴颜喀拉地块同东昆仑地块的持续碰撞导致地壳加厚,密度增大,使岩石圈重力不稳定发生拆沉作用,引发岩石圈地幔减压熔融,产生大量的镁铁质岩浆岩;镁铁质岩浆底侵不同类型地壳熔融及拆沉地壳部分熔融而形成的岩浆交代地幔,以及岩浆混合和岩浆后期演化,形成了东昆仑造山带晚三叠世丰富多样的岩浆岩。  相似文献   

19.
NE China is the easternmost part of the Central Asian Orogenic Belt (CAOB). The area is distinguished by widespread occurrence of Phanerozoic granitic rocks. In the companion paper (Part I), we established the Jurassic ages (184–137 Ma) for three granitic plutons: Xinhuatun, Lamashan and Yiershi. We also used geochemical data to argue that these rocks are highly fractionated I-type granites. In this paper, we present Sr–Nd–O isotope data of the three plutons and 32 additional samples to delineate the nature of their source, to determine the proportion of mantle to crustal components in the generation of the voluminous granitoids and to discuss crustal growth in the Phanerozoic.

Despite their difference in emplacement age, Sr–Nd isotopic analyses reveal that these Jurassic granites have common isotopic characteristics. They all have low initial 87Sr/86Sr ratios (0.7045±0.0015), positive Nd(T) values (+1.3 to +2.8), and young Sm–Nd model ages (720–840 Ma). These characteristics are indicative of juvenile nature for these granites. Other Late Paleozoic to Mesozoic granites in this region also show the same features. Sr–Nd and oxygen isotopic data suggest that the magmatic evolution of the granites can be explained in terms of two-stage processes: (1) formation of parental magmas by melting of a relatively juvenile crust, which is probably a mixed lithology formed by pre-existing lower crust intruded or underplated by mantle-derived basaltic magma, and (2) extensive magmatic differentiation of the parental magmas in a slow cooling environment.

The widespread distribution of juvenile granitoids in NE China indicates a massive transfer of mantle material to the crust in a post-orogenic tectonic setting. Several recent studies have documented that juvenile granitoids of Paleozoic to Mesozoic ages are ubiquitous in the Central Asian Orogenic Belt, hence suggesting a significant growth of the continental crust in the Phanerozoic.  相似文献   


20.
浙东早白垩世火山岩组合的地球化学及其成因研究   总被引:25,自引:6,他引:25  
浙东早白垩世含中性岩的火山岩组合和双峰式火山岩组合的主量元素和微量元素特征对比研究表明,中性火山岩的地球化学特征明显受到伴生的基性和酸性火山岩的影响。它们的微量元素协变关系证实:中性火山岩是由基性岩浆和酸性岩浆混合形成的。双峰式火山岩具有与含中性岩的火山岩组合相类似的主量元素特征,但两者的微量元素特征相差较大。根据东南沿海在早白垩世时期的构造背景是由挤压向伸展拉张转变,以及各种元素具有不同的扩散速度,提出了浙东早白垩世火山岩组合的形成模式:若基性岩浆和酸性岩浆仅进行了部分微量元素的交换,没有来得及发生主量元素的交换,就在伸展拉张的构造背景下喷出地表,则形成双峰式火山岩组合;若基性岩浆与酸性岩浆在地壳深处共存的时间较长,发生一定程度的主量元素交换,则形成偏基性和偏酸性的中性岩浆,若进一步发生化学成分的交换,则可形成典型的安山质岩浆,喷出地表就形成含中性岩的火山岩组合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号