首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr–Nd–Pb and δ18O isotopes) and geochronological (U–Pb zircon and Ar–Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni?de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126–0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84–18.87, 207Pb/204Pb = 15.64–15.67 and 208Pb/204Pb = 38.93–38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038–0.7053) and felsic (0.7040–0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.  相似文献   

2.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

3.
This work presents zircon U–Pb age and whole-rock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a 206Pb/238U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of TiO2 (2.62 wt%–4.25 wt%) and P2O5 (0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N = 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.  相似文献   

4.
The 40Ar–39Ar dating reveals three episodes of basaltic volcanism in eastern Guangdong of SE China since the late Eocene (i.e., 35.5, ~20 and 6.6 Ma). The Miocene alkali olivine basalts (~20 and 6.6 Ma) have OIB-like trace element characteristics, which is coupled with low (87Sr/86Sr)i, high εNd(t), and high εHf(t). In contrast, the late Eocene basalts (35.5 Ma) have overall characteristics of “Island Arc” basalts with strong negative Ta–Nb–Ti anomalies in the primitive mantle-normalized multi-element diagram with high (87Sr/86Sr)i, negative εNd(t), and relatively low εHf(t). All basalts have unexpectedly high 207Pb/204Pb and 208Pb/204Pb, delineating a DUPAL signature in the sources. The late Eocene Arc-like basalts may reflect contributions of relict ancient metasomatized mantle lithosphere that melted as the result of extension-induced asthenospheric upwelling and heating, whereas the Miocene OIB-like basalts may represent partial melting of the asthenospheric mantle beneath the thickened lithosphere. We propose that the Cenozoic basaltic volcanism in eastern Guangdong records an overall lithospheric thickening process beneath SE China, that is, a continental rift system from its maximum extension in the late Eocene to its waning in the Miocene. This interpretation is consistent with the evolution of the South China Sea, whose origin is most consistent with the development of a passive continental margin. The seafloor spreading of the South China Sea during ~ 32–16 Ma may not result from the effect of the “Hainan” mantle plume, but rather played a positive role in allowing the mantle plume to express on the surface.  相似文献   

5.
Review Section     
ABSTRACT

The petrology, geochronology, and geochemistry of the early Permian volcanic rocks from Houtoumiao area, south Xiwuqi County in central Inner Mongolia of China, are studied to elucidate the early Permian tectonic setting of the region. The volcanic rocks, which are interbedded with sandstone, feature both mafic and felsic compositions and show a bimodal nature. Zircon U–Pb dating reveals that the volcanic rocks formed at 274–278 Ma, similar to the ages of bimodal magmatism in neighbouring areas. The mafic rocks are composed of tholeiitic basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite. They are rich in Th, U, and LILEs, depleted in HFSEs Nb, Ta, and Ti, and have positive εNd(t) values (+3.6 to +7.9). Geochemical analyses indicate that the mafic rocks originated from metasomatized lithospheric mantle. The felsic volcanic rocks are mainly rhyolite, with minor trachyte and dacite. They have different evolutionary tendencies of major elements, chondrite-normalized REE patterns, and isotopic compositions from the mafic volcanic rocks, which preclude formation by fractional crystallization of mafic melts. The εNd(t) values of the felsic rocks are similar to those of the Carboniferous Baolidao arc rocks in the region. It is suggested that Permian felsic melts originated from the partial melting of Carboniferous juvenile arc-related rocks. By comparison with typical Cenozoic bimodal volcanism associated with several tectonic settings, including rift, post-collisional setting, back-arc basin, and the Basin and Range, USA, the bimodal volcanic rocks in central Inner Mongolia display similar petrological and geochemical characteristics to the rocks from back-arc basin and the Basin and Range, USA. Based on the analysis of regional geological data, it is inferred that the early Permian bimodal volcanic rocks in the study area formed on an extensional continental margin of the Siberian palaeoplate after late Carboniferous subduction–accretion.  相似文献   

6.
The Eocene volcano-sedimentary units in the southern part of the Eastern Pontides (NE Turkey) are confined within a narrow zone of east–west trending, semi-isolated basins in Bayburt, Gümü?hane, ?iran and Alucra areas. The volcanic rocks in these areas are mainly basalt and andesite through dacite, with a dominant calc-alkaline to rare tholeiitic tendency. 40Ar–39Ar dating of these volcanic rocks places them between 37.7 ± 0.2 and 44.5 ± 0.2 Ma (Middle Eocene). Differences in the major and trace element variations can be explained by the fractionation of clinopyroxene ± magnetite in basaltic rocks and that of hornblende + plagioclase ± magnetite ± apatite in andesitic rocks. Primitive mantle-normalized multi-element variations exhibit enrichment of large-ion lithophile elements and to a lesser extent, of light rare earth elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magma derived from an enriched mantle source. Chondrite-normalized rare earth element patterns of the aforementioned volcanic rocks resemble each other and are spoon-shaped with low-to-medium enrichment (LaN/LuN = 2–14), indicating similar spinel lherzolitic mantle source(s). Sr, Nd and Pb isotopic systematics imply that the volcanic rocks are derived from a subduction-modified subcontinental lithospheric mantle. Furthermore, post-collisional thickened continental crust, lithospheric delamination and a subduction-imposed thermal structure are very important in generating Tertiary magma(s). The predominantly calc-alkaline nature of Eocene volcanic rocks is associated with increasing geodynamic regime-extension, whereas tholeiitic volcanism results from local variations in the stress regime of the ongoing extension and the thermal structure, as well as the thickness of the crust and the mantle-crust source regions. Based on volcanic variety and distribution, as well as on petrological data, Tertiary magmatic activity in Eastern Pontides is closely related to post-collisional thinning of the young lithosphere, which, in turn, is caused by extension and lithospheric delamination after collisional events between the Tauride–Anatolide Platform and the Eurasian Plate.  相似文献   

7.
Volcanic rocks from the Gümü?hane area in the southern part of the Eastern Pontides (NE Turkey) consist mainly of andesitic lava flows associated with tuffs, and rare basaltic dykes. The K-Ar whole-rock dating of these rocks range from 37.62?±?3.33 Ma (Middle Eocene) to 30.02?±?2.84 Ma (Early Oligocene) for the andesitic lava flows, but are 15.80?±?1.71 Ma (Middle Miocene) for the basaltic dykes. Petrochemically, the volcanic rocks are dominantly medium-K calc-alkaline in composition and show enrichment of large ion lithophile elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magmas derived from an enriched mantle source. Chondrite-normalized rare-earth element patterns of the volcanic rocks are concave upwards with low- to-medium enrichment (LaCN/LuCN?=?3.39 to 12.56), thereby revealing clinopyroxene- and hornblende-dominated fractionations for andesitic-basaltic rocks and tuffs, respectively. The volcanic rocks have low initial 87Sr/86Sr ratios (0.70464 to 0.70494) and εNd(i) values (+1.11 to +3.08), with Nd-model ages (TDM) of 0.68 to 1.02 Ga, suggesting an enriched lithospheric mantle source of Proterozoic age. Trace element and isotopic data, as well as the modelling results, show that fractional crystallization and minor assimilation played an important role in the evolution of the volcanic rocks studied. The Eocene to Miocene volcanism in the region has resulted from lithospheric delamination and the associated convective thinning of the mantle, which led to the partial melting of the subduction-metasomatized lithospheric mantle.  相似文献   

8.
《International Geology Review》2012,54(10):1234-1252
ABSTRACT

The lower Miocene (~22–19 Ma) volcanic units in the NE–SW-trending Tunçbilek–Domaniç basin, located in the northeastern-most part of the Neogene successions in western Anatolia, are composed of (1) high-K, calc-alkaline dacitic to rhyolitic volcanic rocks of the Oklukda?? volcanics; (2) calc-alkaline low-MgO (evolved) basalts; and (3) high-MgO mildly alkaline basalts of the Karaköy volcanics. Sr isotopic ratios of the volcanic units increase from high-MgO (~0.7055–0.7057) to low-MgO basaltic rocks (~0.7066–0.7072) and then to dacitic-rhyolitic rocks (0.7081–0.7086). Geochemical features of the volcanic rocks reveal that the calc-alkaline evolved basalts were formed by mixing of basic and acidic magmas.

Geochemical studies in the last decade show that the Miocene mafic volcanic rocks in western Anatolia are mainly composed of high-MgO shoshonitic-ultrapotassic rocks (SHO-UK), of which mantle sources were variably, but also intensely metasomatized with crustally derived materials during collisional processes in the region. However, geochemical comparison of the high-MgO basalts of the Karaköy volcanics with the SHO-UK rocks in this region reveal that that the former has too low 87Sr/86Sr(i) and high 143Nd/144Nd(i) ratios, with lower LILE and LREE abundances, which are firstly described here. These features are interpreted to be derived from more slightly enriched lithospheric mantle sources than that of the SHO-UK. Accepting the SHO-UK rocks in the region were derived from mantle sources that had been metasomatized by northward subduction of crustal slices during Alpine collisional processes, it is proposed that the imbrication and direct subduction of crustal slices were not reached to, and were limited in the mantle domains beneath the basin. The dacites of the Oklukda?? volcanics might be formed either by high-degree melting of the same sources with the SHO-UK, or by melting of the lower crustal mafic sources as previously proposed, and then evolved into the rhyolites via fractional crystallization with limited crustal contribution.  相似文献   

9.
Mineral chemistry, major and trace elements, 40Ar/39Ar age and Sr–Nd–Pb isotopic data are presented for the Late Cretaceous Hamsilos volcanic rocks in the Central Pontides, Turkey. The Hamsilos volcanic rocks mainly consist of basalt, andesite and associated pyroclastics (volcanic breccia, vitric tuff and crystal tuff). They display shoshonitic and high-K calc-alkaline affinities. The shoshonitic rocks contain plagioclase, clinopyroxene, alkali feldspar, phlogopite, analcime, sanidine, olivine, apatite and titanomagnetite, whereas the high-K calc-alkaline rocks contain plagioclase, clinopyroxene, orthopyroxene, magnetite / titanomagnetite in microgranular porphyritic, hyalo-microlitic porphyritic and glomeroporphyritic matrix. Mineral chemistry data reveal that the pressure condition of the clinopyroxene crystallisation for the shoshonitic rocks are between 1.4 and 6.3 kbar corresponds to 6–18-km depth and the high-K calc-alkaline rocks are between 5 and 12 km. 40Ar/39Ar age data changing between 72 ± .5 Ma and 79.0 ± .3 Ma (Campanian) were determined for the Late Cretaceous Hamsilos volcanic rocks, contemporaneous with the subduction of the Neo-Tethyan Ocean beneath the Pontides. The studied volcanic rocks were enriched in the large-ion lithophile and light rare earth element contents, with pronounced depletion in the contents of high-field-strength elements. Chondrite-normalised rare earth element patterns (LaN/LuN = 6–17) show low to medium enrichment, indicating similar sources of the rock suite. Initial 87Sr/86Sr values vary between .70615 and .70796, whereas initial 143Nd/144Nd values change between .51228 and .51249. Initial 206Pb/204Pb values vary between 18.001 and 18.349, 207Pb/204Pb values between 15.611 and 15.629 and 208Pb/204Pb values between 37.839 and 38.427. The main solidification processes involved in the evolution of the volcanic rocks consist of fractional crystallisation, with minor amounts of crustal contamination ± magma mixing. According to geochemical evidence, the shoshonitic melts in the Hamsilos volcanic rocks were possibly derived from the low degree of partial melting of a subcontinental lithospheric mantle (SCLM), while the high-K calc-alkaline melts were derived from relatively high degree of partial melting of SCLM that was enriched by fluids and/or sediments from a subduction of oceanic crust.  相似文献   

10.
The Duolong porphyry Cu–Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au) was recently discovered in the southern Qiangtang terrane, central Tibet. Here, new whole‐rock elemental and Sr–Nd–Pb isotope and zircon Hf isotopic data of syn‐ and post‐ore volcanic rocks and barren and ore‐bearing granodiorite porphyries are presented for a reconstruction of magmas associated with Cu–Au mineralization. LA–ICP–MS zircon U–Pb dating yields mean ages of 117.0 ± 2.0 and 120.9 ± 1.7 Ma for ore‐bearing granodiorite porphyry and 105.2 ± 1.3 Ma for post‐ore basaltic andesite. All the samples show high‐K calc‐alkaline compositions, with enrichment of light rare earth elements (LREE) and large ion lithophile elements (LILE: Cs and Rb) and depletion of high field strength elements (HFSE: Nb and Ti), consistent with the geochemical characteristics of arc‐type magmas. Syn‐ and post‐ore volcanic rocks show initial Sr ratios of 0.7045–0.7055, εNd(t) values of −0.8 to 3.6, (206Pb/204Pb)t ratios of 18.408–18.642, (207Pb/204Pb)t of 15.584–15.672 and positive zircon εHf(t) values of 1.3–10.5, likely suggesting they dominantly were derived from metasomatized mantle wedge and contaminated by southern Qiangtang crust. Compared to mafic volcanic rocks, barren and ore‐bearing granodiorite porphyries have relatively high initial Sr isotopic ratios (0.7054–0.7072), low εNd(t) values (−1.7 to −4.0), similar Pb and enriched zircon Hf isotopic compositions [εHf(t) of 1.5–9.7], possibly suggesting more contribution from southern Qiangtang crust. Duolong volcanic rocks and granodiorite porphyries likely formed in a continental arc setting during northward subduction of the Bangong–Nujiang ocean and evolved at the base of the lower crust by MASH (melting, assimilation, storage and homogenization) processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In the Yangbajing area, southern Tibet, several monogenic volcanoes were conformably superimposed on the Linzizong calc-alkaline volcanic successions. According to their petrologic and geochemical characteristics, these monogenic volcanoes are composed of three rock varieties: tephritic phonolitic plugs and shoshonitic and trachytic lavas. Their geochemical systematics reveals that low-pressure evolutionary processes in the large voluminous Linzizong calc-alkaline magmas were not responsible for the generation of these potassic–ultrapotassic rocks, but the significant change in petrologic and geochemical characteristics from the Linzizong calc-alkaline to potassic–ultrapotassic magma is likely accounted for the change of metasomatic agents in the southern Tibetan lithospheric mantle source during the Paleocene to Eocene. The tephritic phonolites containing both leucite and plagioclase show primary ultrapotassic character similar to that of Mediterranean plagioleucititic magmas. Radiogenic Sr increases with SiO2 in the xenolith-bearing trachytes strongly suggesting significant crustal assimilation in the shoshonitic magmas. The Yangbajing ultrapotassic rocks have high K2O and Al2O3, and show depletion of high field strength elements (HFSEs) with respect to large ion lithophile elements. In primitive mantle-normalized element diagrams, all samples are characterized by positive spikes at Th (U) and Pb with negative anomalies at Ba, Nb–Ta and Ti, reflecting the orogenic nature of the ultrapotassic rocks. They are characterized by highly radiogenic 87Sr/86Sr(i) ratios (0.7061–0.7063) and unradiogenic 143Nd/144Nd(i) (0.5125), and Pb isotopic compositions (206Pb/204Pb = 18.688–18.733, 207Pb/204Pb = 15.613–15.637, and 208Pb/204Pb = 38.861–38.930) similar to the global subducting sediment. Strong enrichment of incompatible trace elements and high Th fractionation from the other HFSEs (such as Nb and U) clearly indicate that the Th-enriched sedimentary component in a network veined mantle source was mainly introduced by sediment-derived melts. In addition, the ultrapotassic rocks have significant Ce (Ce/Ce* = 0.77–0.84) and Eu (Eu/Eu* = 0.72–0.75) anomalies, suggesting a subduction sediment input into the southern Tibetan lithospheric mantle source. In contrast, high U/Th (> 0.20) and Ba/Th (> 32) and low Th/La (< 0.3) in the shoshonites indicate that the Eocene potassic magma originated from partial melting of the surrounding peridotite mantle pervasively affected by slab-related fluid addition from the dehydration of either the subducting oceanic crust or the sediment. Thus, at least two different subduction-related metasomatic agents re-fertilized the upper mantle. According to the radiometric ages and spatial distribution, the Gangdese magmatic association shows a temporal succession from the Linzizong calc-alkaline to ultrapotassic magmas. This indicates a late arrival of recycled sediments within the Tibetan lithospheric mantle wedge. The most diagnostic signatures for the involvement of continent-derived materials are the super-chondritic Zr/Hf (45.5–49.2) and elevated Hf/Sm values (0.81–0.91) in the ultrapotassic rocks. Therefore, the occurrence of orogenic magmatism in the Gangdese belt likely represents the volcanic expression of the onset of the India–Asia collision, preceding the 10 Ma Neo-Tethyan slab break-off process at 42–40 Ma. The absence of residual garnet in the mantle source for the ultrapotassic volcanism seems to imply that the southern Tibetan lithosphere was not been remarkably thickened until the Eocene (~ 50 Ma).  相似文献   

12.
Mesozoic mafic dikes in the Gan-Hang tectonic belt (GHTB) provide an opportunity to explore both the nature of their mantle source(s) and the secular evolution of the underlying Mesozoic lithospheric mantle in the region. The geochronology and primary geochemical and Sr–Nd–Pb isotopic compositions of Group 1 (middle section of GHTB) and Group 2 (the rest of the section) dolerite dikes spanning the GHTB were investigated. K–Ar ages indicate that dikes of both groups were emplaced during the Cretaceous (131–69 Ma). The dikes are doleritic in composition and are enriched in both large ion lithophile elements (LILEs; e.g. Rb, Ba, and Pb) and light rare earth elements (LREEs), with a wide range of Eu anomalies, but are depleted in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti) and heavy rare earth elements (HREEs). Dikes sampled in the middle section of the GHTB (Group 1) show more pronounced REE differentiation and a greater contribution from crustal material than those from the east and west sections (Group 2) and are similar to GHTB volcanic rocks in exhibiting a slight enrichment in LREEs. The dolerites are further characterized by a wide range in 87Sr/86Sr i ?=?0.7041–0.7110, 143Nd/144Nd i ?=?0.511951–0.512758, ?Nd t ?=?–10.4 to?+5.6, and Pb isotopic ratios (206Pb/204Pb i ?=?18.1–18.3, 207Pb/204Pb i ≈ 15.6, and 208Pb/204Pb i ?=?38.2–38.7). The dikes have undergone fractional crystallization of olivine, clinopyroxene, plagioclase, and Ti-bearing phases, except for dikes from the Anding area, which possibly experienced fractionation of plagioclase. Geochemically, all the dike samples originated from mantle sources ranging in composition from depleted to enriched that contained a component of foundered lower crust; crustal contamination during the ascent of these magmas was negligible. In the context of the late Mesozoic lithospheric extension across South China, mafic dike magmatism was likely triggered by the reactivation of deep faults, which promoted foundering of the lower crust and subsequent mantle upwelling in the GHTB.  相似文献   

13.
《International Geology Review》2012,54(10):1278-1293
ABSTRACT

Zircon U–Pb geochronological and geochemical analyses are reported for a suite of the early Carboniferous volcanic rocks from West Junggar (Northwest China), southern Central Asian Orogenic Belt (CAOB), with the aim to investigate the sources, petrogenesis, and tectonic implications. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb analysis from an andesite yielded concordant weighted mean 206Pb/238U age of 345 ± 3 Ma, indicating the presence of early Carboniferous volcanic rocks in West Junggar. The early Carboniferous volcanic rocks consist of basalt, basaltic andesite, and andesite. Geochemically, all the samples bear the signature of ocean island basalt (OIB), and are characterized by alkaline affinity with minor variations in SiO2 compositions (45.13–53.05 wt.%), high concentrations of Na2O + K2O (5.08–8.89 wt.%) and TiO2 (1.71–3.35 wt.%), and LREE enrichment and HREE depletion ((La/Yb)N = 7.1–12.4), with weak Eu anomalies (Eu/Eu* = 0.9–1.1) and no obvious Nb, Ta, and Ti negative anomalies. These features suggest that the early Carboniferous volcanic rocks were derived from an OIB-related source that consists of oceanic lithosphere with ~1–3% degree partial melting of garnet lherzolite. From these observations, in combination with previous work, we conclude that the early Carboniferous alkaline volcanic rocks in Karamay region formed by upwelling of asthenospheric mantle through a slab window in a forearc setting during consumption of the West Junggar Ocean. Meanwhile, seamounts, which formed in the Late Devonian and were accreted and subducted in Karamay arc, also brought geological effects in the subduction zone.  相似文献   

14.
The Denizli region of the Western Anatolia Extensional Province (WAEP) includes a typical example of intra-plate potassic magmatism. Lamproite-like K-rich to shoshonitic alkaline rocks erupted in the Upper Miocene-Pliocene in a tensional tectonic setting. The absence of Nb and Ta depletion, low Th/Zr and high Nb/Zr ratios and distinct isotopic values (i.e. low 87Sr/86Sr, 0.703523–0.703757; high 143Nd/144Nd, 0.512708–0.512784; high 206Pb/204Pb, 19.079–19.227, 207Pb/204Pb, 15.635–15.682, 208Pb/204Pb, 39.144–39.302) mark an anorogenic geochemical signature of the Denizli volcanics. All of the lavas are strongly enriched in large-ion-lithophile elements (e.g. Ba 1,100–2,200 ppm; Sr 1,900–3,100 ppm; Rb 91–295 ppm) and light rare-earth elements (e.g. LaN?=?319–464), with a geochemical affinity to ocean-island basalts and lack of a recognizable subduction signature or any evidence for crustal contamination. The restricted range of isotopic (Sr, Nd, Pb) ratios in both near-primitive (Mg# 66.7–77.2) and more evolved (Mg# 64.6–68.7) members of the Denizli volcanics signify their evolution from an isotopically equilibrated parental mantle source. Their high Dy/Yb and Rb/Sr values also suggest that garnet and phlogopite were present in the mantle source. Their strong EM-II signature, very low Nd model ages (0.44–049 Ga) and isotopic (Sr-Nd-Pb) values analogous to those of the Nyiragongo potassic basanites and kimberlites from the African stable continental settings, suggest that the parental melts that produced the Denizli volcanics are associated with very young and enriched mantle sources, which include both sublithospheric and enriched subcontinental lithospheric mantle melts. Mantle-lithosphere delamination probably played a significant role in the generation of these melts, and could be related to roll-back of the Aegean arc, lithospheric extension and asthenospheric mantle upwelling.  相似文献   

15.
Situated in the southwest of the Central Asian Orogenic Belt (CAOB), the South Tian Shan (STS) Block is a key area for understanding the final accretion of the CAOB. A suite of volcanic rocks interbedded with continental sediments from the Xiaotikanlike Formation lies along the southwestern edge of the Tian Shan orogen. Laser-ablation-inductively coupled plasma-mass spectrometer U–Pb dating provided a crystallization age of 295.0 ± 2.8 Ma (MSWD = 1.3), suggesting an Early Permian magmatic event. The volcanic rocks show a variable composition, with dominant rhyolites and dacites, subordinate basaltic andesites and few basalts. The felsic rocks are enriched in K and exhibit remarkably negative anomalies in Ba, Sr, Eu, P and Ti. These anomalies associated with their high negative ε Nd(t) values and old Nd model ages suggest that they are most likely sourced from ancient lower crustal rocks. The mafic rocks are characterized by high Mg#, Cr, Ni contents, negative Nb, Ta anomalies and pronounced enrichment in light rare earth elements as well as mild enrichment in large-ion lithophile elements. The mafic rocks are thus inferred to derive from enriched subcontinental lithospheric mantle. The petrographic and geochemical characteristics of the Xiaotikanlike Formation volcanic rocks indicate that they were generated under a post-collisional regime. Therefore, the final collision between the Tarim Craton and the Kazakhstan–Yili terrane took place before Early Permian, most probably at Late Carboniferous. Differing from other tectonic units of the CAOB, the recycling of ancient lithospheric crust played a significant role in the continental growth of the STS Block.  相似文献   

16.
In this study, petrological characteristics of the Early-Middle Eocene Bozaniç volcanic rocks resulting from the closure of the Neotethys Ocean in the Central Sakarya region and geodynamic evolution of the Eocene magmatism in the region were investigated. Although previous researchers attained insightful findings about the geodynamic evolution of the region, the age of the post-collisional volcanism, petrological characteristics, and source of the magma remain uncertain. Therefore, volcanic rocks outcropping nearby Sar?cakaya-Mihalgazi (Eski?ehir) are investigated in this study. For that purpose, geological map of the study area was drawn and mineralogical, petrographic, geochemical, and isotopic analyses were performed on rock samples collected from different locations. Bozaniç volcanic rocks outcropping as lavas and pyroclastics (agglomerate, lapillistone, and tuff) seem to be derived from four separate volcanic chimneys located in the study area and their composition are typically andesite. According to petrographic data, hypocrystalline porphyritic and microlitic porphyritic are the dominant textures of the rocks. Plagioclase, amphibole, clinopyroxene, and biotite are the main minerals, while sanidine, opaque minerals, chalcedony, calcite, and chlorite can also be observed in small amounts. Geochemically, they show calc-alkaline characteristics and contain medium-high K. Fractional crystallization is the most important process in the development of the rocks. Bozaniç volcanic rocks were derived from a lithospheric mantle source that developed in the active continental margin. According to 40Ar/39Ar age spectra of the samples, the ranges of 48.13 ± 0.15–48.78 ± 0.23 Ma plateau ages were obtained. (87Sr/86Sr) i ratios of the rocks range between 0.705404 and 0.705502, while (143Nd/144Nd) i ratios range between 0.512570 and 0.512581. Consequently, the age data obtained in this study show that the formation time of the first products of the post-collisional volcanism be as early as the Early Eocene and the presence of those is important in terms of the elucidation of geodynamic evolution of the region.  相似文献   

17.
The paper presents new U–Pb zircon ages and geochemical data from early Carboniferous volcanic rocks of the Wuerkashier Mountains in the northern West Junggar region, NW China, and of the Char suture–shear zone in East Kazakhstan. The study included analysis of geological setting, major and trace elements, and rock petrogenesis. Both localities host early Carboniferous volcanic units dominated by plagioclase-porphyry andesites and dacites. A West Junggar dacite yielded a 206Pb/238U age of 331 ± 3 Ma. The Junggar volcanic rocks are tholeiitic, and the Char samples are intermediate between tholeiitic and calc-alkaline. Both the Junggar and Char volcanic units are characterized by LREE enriched rare-earth spectra (La/Smn = 1.1–2.4) with Eu negative anomalies (Eu/Eu* = 0.12–1.0) and Nb-Ta minimums (Nb/Thpm = 0.15–0.35; Nb/Lapm = 0.3–0.7) on multi-element spectra. The Junggar andesites and dacites have higher REE and HFSE (Ti, Nb, Zr, Y, and Th) compared with the Char rocks, suggesting their derivation from a different mantle source. The melting modelling in the Nb-Yb system showed that the Junggar volcanic rocks formed by low- to medium- (2–5%) degree melting of depleted mantle harzburgite and spinel lherzolite. The Char volcanic rocks formed by high-degree melting (15–20%) of spinel lherzolite and garnet-bearing peridotite. The regional geology of West Junggar and East Kazakhstan and the geochemical features of the rocks under study (i.e. depletion in Nb, Ta, and Ti and enrichment in Th, and combination of LREE enrichment and HFSE depletion) all suggest a subduction-related origin of both Junggar and Char volcanic rocks. The early Carboniferous volcanic rocks of West Junggar possibly formed by subduction of the Junggar-Balkhash ocean beneath an active margin of the Kazakhstan continent, whereas those of East Kazakhstan formed by subduction of the Irtysh-Zaisan Ocean beneath an intra-oceanic arc at the active margin of the Siberian continent.  相似文献   

18.
The Absaroka volcanic field is comprised of predominant andesitic volcaniclastic rocks and less abundant potassium-rich mafic lavas (shoshonites and absarokites). Strontium and lead isotopic variations preclude a simple derivation from an isotopically uniform source: Sr87/Sr86, 0.7042 to 0.7090; Pb206/Pb204, 16.31 to 17.30; Pb208/Pb204, 36.82 to 37.64. We postulate that these rocks were derived from a lower crust or upper mantle which underwent a preferential loss of uranium relative to lead approximately 2800±200 m.y. ago. Variations in lead and strontium isotopic compositions are thought to reflect small inhomogeneities in U/Pb and Rb/Sr ratios in the source.Publication authorized by the Director, U.S. Geological Survey.  相似文献   

19.
《International Geology Review》2012,54(12):1479-1503
ABSTRACT

Early Cretaceous volcanic rocks are widely distributed in northeast China and being extensively observed recently. However, petrogenesis and tectonic setting of these volcanic rocks are still on debate. We present zircon U–Pb ages, whole-rock geochemistry and zircon Hf isotope for these volcanic and sub-volcanic rocks surrounding the Erlian Basin including basic-intermediate volcanic rocks, intermediate-felsic volcanic rocks, and dacites and trachyandesite from dikes. The zircon U–Pb dating results indicate that these rocks formed in the Early Cretaceous (146–129 Ma). The basic-intermediate volcanic rocks mainly consist of basaltic andesite, which are featured by low SiO2 concentrations (49.96–58.34 wt. %), high Mg# values (54–37) and Co contents (17.85–25.98 ppm), and positive εHf(t) values (+7.11 to +13.87). Moreover, they show high La/Nb (1.79–2.87) and low La/Ba (0.02–0.08) ratios. Such features indicate that they were derived from partial melting of lithospheric mantle that had been modified by fluids. The intermediate-felsic volcanic rocks consist of trachydacite and andesite, which show medium SiO2 concentrations (58.31–66.44 wt. %), a wide range of Mg# values (28–53) and with A1-type granites affinities. These features, along with slightly positive to negative εHf(t) values (+0.53 to ?17.71), indicate that they originated from mixed magma of melted lower crust and mantle substances. Dacites from dikes are distinguished by high SiO2 concentrations (65.72–67.2 wt. %), negative εHf(t) values (?2.55 to ?6.72) and old zircon Hf TDM2 ages (1453–1653 Ma), suggesting they were generated by melting of Mesoproterozoic and Palaeoproterozoic crustal material. All of the investigated volcanic and sub-volcanic rocks exhibit geochemical signatures of extension setting. In combination with previous studies, we suggest the Early Cretaceous extension in northeast China is related to the collapse of thickened lithosphere after closure of the Mongol–Okhotsk Ocean and to the slab break off of the Mudanjiang Ocean.  相似文献   

20.
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号