首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1,500- to 2,000-m-thick Permian volcano-sedimentary Malu?iná Formation of the uppermost nappe of the Central Western Carpathians (a segment of the Alpine-Carpathian orogenic belt) occurs in several fault blocks distributed across Slovakia. This unit is a part of a post-Variscan overstep suite that followed accretion of the Gothic terranes to Laurussia. It consists of three upward-fining megacycles of semi-arid/arid, fluvial-lacustrine clastic redbeds and local dolomites and evaporites. Abundant intercalated volcanic rocks are predominantly mafic lava flows; volcaniclastic rocks and dykes are subordinate. Felsic rocks are represented by rare volcaniclastics and dykes. Compositionally, the mafic rocks are rift-related continental tholeiites with enriched light REE patterns having (La/Yb)n ratios between 2 and 5.5 and with mantle-normalized patterns characterized by negative Nb-Ta anomalies. The rocks were derived from subcontinental lithospheric mantle and were affected by crustal contamination. It is inferred that the volcanism of the Malu?iná Formation formed in a Basin and Range tectonic setting in which rifting followed collision of the Palaeo-Tethys ridge with the trench bordering southern Laurussia. This model can be applied to other Permian volcanic suites of rift basins in the Eastern Alps and Carpathians over a strike-length of about 1,000 km, which indicates the width of the slab window.  相似文献   

2.
北山造山带位于中亚造山带南缘中段地区,是中亚造山带、塔里木克拉通和华北克拉通的构造结合部。年代学资料表明北山南带晚古生代存在一期重要的岩浆活动,所形成的岩石类型包括了镁铁-超镁铁质杂岩、花岗岩类以及酸性火山岩。音凹峡地区位于北山南带,该地区广泛分布着厚度巨大的二叠系。这套地层主要是由酸性火山岩及火山碎屑岩组成,流纹岩的锆石LA-ICP-MS U-Pb年龄为273±1 Ma,为早二叠世。针对音凹峡地区酸性火山岩的地球化学研究发现,其具有高SiO_2、K_2O+Na_2O、Al_2O_3含量、低Fe_2O_3~T、Mg O、P_2O_5含量;富集轻稀土元素,重稀土元素无分异,具有明显的Eu负异常;微量元素方面,酸性火山岩富集Cs、Rb、Th、U、Zr和Hf等元素,而相对亏损Ba、Nb、Ta、Sr、P、Ti等元素。酸性火山岩的锆石ε_(Hf)(t)值为-6.0~3.9,具有较老的Hf同位素模式年龄,t_(DM2)=1046~1669 Ma。音凹峡酸性火山岩的地球化学证据表明这套火山岩系可能由中-新元古代壳源岩石部分熔融形成,并与幔源岩浆进行了不同程度的混合,之后发生了分离结晶作用。综合音凹峡地区同时代镁铁质岩石、花岗岩类的研究成果,以及该地区二叠系沉积建造及火山岩特征分析可知,北山南带在早二叠世应处于大陆裂谷的构造背景。  相似文献   

3.
《Precambrian Research》2005,136(2):107-123
As the lowest volcanics-bearing unit of the Neoproterozoic succession, the Beiyixi Formation is the key to understanding the early response to the breakup of the Roninia supercontinent in the Tarim Block. The SHRIMP analyses of zircons from the volcanic rocks at the bottom of the Beiyixi Formation yield a weighted mean 206Pb/238U age of 755 ± 15 Ma. This is interpreted as the eruption age of the Beiyixi volcanic rocks. The Beiyixi volcanic rocks consist of bimodal basalt and dacite-rhyolite with a SiO2 gap between 55% and 65%. The mafic rocks display negative ɛNd (755 Ma) values (−9.9 to −10.8), moderate enrichment in LILE and variable depletion in Nb, Ta and P, resembling those of the tholeiitic basalts in continental rift. Geochemical and Nd isotopic characteristics suggest that the mafic rocks were derived from partial melting of an enriched lithospheric mantle reservoir. The felsic rocks show negative ɛNd (755 Ma) values (−7.9 to −9.2), negative Nb, Ta, P and Ti anomalies, very high LaN/YbN (62–92) ratios and LILE abundances, and may be generated by melting of eclogites or garnet amphibolites in the lower crust, as a result of basalt emplacement into continental crust during continental rifting. The age of 755 ± 15 Ma indicates that the Beiyixi glaciation took place later than 755 Ma and it could be correlated with the Chang’an glaciation in the Yangtze Block and the Sturtian–Rapitan glaciation in other Rodinia Blocks. The geochemical characteristics of the Beiyixi volcanic rocks resemble those of the rift-related magmatism in other Rodinia Blocks, suggesting that the Beiyixi volcanism was a part of global magmatism during the breakup of Rodinia supercontinent. The age and geochemical features of the Beiyixi volcanic rocks also reveal that the mantle plume activity spread to the northwestern margin of the Rodinia supercontinent and probably resulted in the breakup between Australia and Tarim Blocks.  相似文献   

4.
The Yamansu belt,an important tectonic component of Eastern Tianshan Mountains,of the Central Asian Orogenic Belt,NW China hosts many Fe-(Cu)deposit.In this study,we present new zircon U-Pb geochronology and geochemical data of the volcanic rocks of Shaquanzi Formation and diorite intrusions in the Yamansu belt.The Shaquanzi Formation comprises mainly basalt,andesite/andesitic tuff,rhyolite and sub-volcanic diabase with local diorite intrusions.The volcanic rocks and diorites contain ca.315-305 Ma and ca.298 Ma zircons respectively.These rocks show calc-alkaline affinity with enrichment in large-ion lithophile elements(LILEs),light rare-earth elements(LREEs),and depletion in high field strength elements(HFSEs)in primitive mantle normalized multi-element diagrams,which resemble typical back-arc basin rocks.They show depleted mantle signature with ε_(Nd)(t)ranging from+3.1 to +5.6 for basalt;+2.1 to+4.7 for andesite;-0.2 to+1.5 for rhyolite and the ε_(Hf)(t)ranges from-0.1 to +13.0 for andesites;+5.8 to +10.7 for andesitic tuffs.We suggest that the Shaquanzi Formation basalt might have originated from a depleted,metasomatized lithospheric mantle source mixed with minor(3-5%)subduction-derived materials,whereas the andesite and rhyolite could be fractional crystallization products of the basaltic magma.The Shaquanzi Formation volcanic rocks could have formed in an intracontinental back-arc basin setting,probably via the southward subduction of the Kangguer Ocean beneath the Middle Tianshan Massif.The Yamansu mineralization belt might have undergone a continental arc to back-arc basin transition during the Late Carboniferous and the intra-continental back-arc basin might have closed in the Early Permian,marked by the emplacement of dioritic magma in the Shaquanzi belt.  相似文献   

5.
ABSTRACT

The Changchun-Yanji belt recorded widespread Permo-Triassic magmatism, but their origins remain unclear, inhibiting a comprehensive understanding of the magmatic response to the final closure of the Paleo-Asian ocean in the eastern Central Asian Orogenic Belt (CAOB). Here, we present new geochronological, geochemical, and Hf isotopic data for the Permo-Triassic plutons from Northern Liaoning province, NE China. Combined the published ages with our new data, the Permo-Triassic magmatism in the eastern CAOB can be divided into five episodes: early Permian (293–274 Ma), middle–late Permian (270–257 Ma), latest late Permian–Middle Triassic (255–242 Ma), Late Triassic (240–215 Ma), and latest Late Triassic (209–200 Ma). The middle Permian and Late Triassic mafic plutons (i.e. ~266 Ma Mengjiagou gabbro–diorite, ~240 Ma Jiancaicun gabbro and ~224 Ma Shudetun gabbro-diorite) contain relatively high TFe2O3, MgO, Cr and Ni contents with positive εHf(t) values (+1.2 to +7.2), suggesting a depleted mantle origin. These mafic rocks together with the coeval granitoids make up typical bimodal associations, suggesting that they were formed under an extensional environment. The conclusions are also supported by occurrence of A-type granites during 270–257 Ma and 240–215 Ma. By contrast, the granitoids of 255–242 Ma in the eastern CAOB, including the Jianshanzi (~251 Ma) and Daganhe (~242 Ma) monzogranites, show typical geochemical features of adakitic granites, with high Sr/Y ratios and negative εHf(t) values (–8.6 to – 22.0), suggesting that the magmas were generated through partial melting of thickened ancient lower crust. Combined with previous studies, a four-stage tectonic evolution scenario was proposed: (1) active continental margin stage during 293–274 Ma; (2) continuing subduction resulted in the initiation collision, moderate crustal thickening, and slab break-off during 270–257 Ma; (3) final closure of the Paleo-Asian Ocean associated with continued crustal thickening occurred during 255–242 Ma; (4) lithospheric delamination in a post-collisional extensional environment occurred during 240–215 Ma.  相似文献   

6.
Review Section     
ABSTRACT

The petrology, geochronology, and geochemistry of the early Permian volcanic rocks from Houtoumiao area, south Xiwuqi County in central Inner Mongolia of China, are studied to elucidate the early Permian tectonic setting of the region. The volcanic rocks, which are interbedded with sandstone, feature both mafic and felsic compositions and show a bimodal nature. Zircon U–Pb dating reveals that the volcanic rocks formed at 274–278 Ma, similar to the ages of bimodal magmatism in neighbouring areas. The mafic rocks are composed of tholeiitic basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite. They are rich in Th, U, and LILEs, depleted in HFSEs Nb, Ta, and Ti, and have positive εNd(t) values (+3.6 to +7.9). Geochemical analyses indicate that the mafic rocks originated from metasomatized lithospheric mantle. The felsic volcanic rocks are mainly rhyolite, with minor trachyte and dacite. They have different evolutionary tendencies of major elements, chondrite-normalized REE patterns, and isotopic compositions from the mafic volcanic rocks, which preclude formation by fractional crystallization of mafic melts. The εNd(t) values of the felsic rocks are similar to those of the Carboniferous Baolidao arc rocks in the region. It is suggested that Permian felsic melts originated from the partial melting of Carboniferous juvenile arc-related rocks. By comparison with typical Cenozoic bimodal volcanism associated with several tectonic settings, including rift, post-collisional setting, back-arc basin, and the Basin and Range, USA, the bimodal volcanic rocks in central Inner Mongolia display similar petrological and geochemical characteristics to the rocks from back-arc basin and the Basin and Range, USA. Based on the analysis of regional geological data, it is inferred that the early Permian bimodal volcanic rocks in the study area formed on an extensional continental margin of the Siberian palaeoplate after late Carboniferous subduction–accretion.  相似文献   

7.
The Liuyuan mafic and ultramafic rocks are exposed in Southern Beishan, which is along the southern branch of the Central Asian Orogenic Belt (CAOB). Zircon SHRIMP U–Pb dating showed that Liuyuan gabbros intruded during the early Permian (~ 270–295 Ma) coeval with the basalts and the ultramafic rocks were emplaced at about 250 Ma. The basalts are within–plate tholeiites with slight enrichment in light rare earth elements (LREE) relative to heavy rare earths (HREE) and small negative anomalies of Nb and Ta. Gabbros including olivine gabbros, olivine gabbronorites and troctolites are grouped into two: the cumulate gabbros are depleted in LREE and show small negative Nb and Ta anomalies but distinct positive Sr and Eu anomalies; non–cumulate gabbros resemble tholeiitic basalts. Lamprophyres and cumulate ultramafic rocks are characterized by large enrichment of LREE relative to HREE with depletion in Nb and Ta. The enriched Sr–Nd isotopic trend from DM towards the EM II end member component implies that the lithospheric mantle was progressively enriched with depth by the involvement of subducted crustal material due to the delamination of thickened mantle lithosphere after collision. The digestion of subducted crustal material into the mantle resulting in the metasomatized and enriched mantle is inferred to be an important process during crust–mantle interaction.  相似文献   

8.
中亚造山带南缘二叠纪火山岩的成因及形成环境一直存在争议。本文以内蒙古西乌旗罕乌拉地区发育的大石寨组火山岩为研究对象,对其开展了野外地质、岩石学、锆石U-Pb同位素年代学、地球化学研究。大石寨组火山岩为一套中酸性火山熔岩-碎屑岩组合,岩性以流纹岩为主。锆石LA-ICP-MS U-Pb同位素定年结果显示,2件流纹岩样品的~(206)Pb/~(238)U年龄加权平均值分别为276±0.81Ma(MSWD=1.3)和280±0.76Ma(MSWD=0.69),说明大石寨组流纹岩喷发于早二叠世,反映了早二叠世的构造岩浆作用事件。岩石地球化学研究表明,大石寨组火山岩为一套中酸性火山岩,以高硅、富碱为特征,Ti、Mg、Fe、Ca等元素含量较低;微量元素总体含量较高,具有一致的配分曲线,Rb、Th、U、K、LREE等大离子亲石元素相对于Nb、Ta、HREE等高场强元素明显富集;稀土元素总量偏高,具一致的右倾"海鸥式"配分型式。在微量元素原始地幔标准化蛛网图上显示明显的Ba、Sr、P、Eu和Ti的负异常。10000Ga/Al平均值3.6。地球化学特征显示该套火山岩具有岛弧火山岩的属性,类似A型花岗岩的地球化学特征,为高温低压下长英质地壳部分熔融的产物。结合地球化学特征及区域地质资料,大石寨组火山岩最可能形成于弧后扩张环境,是早二叠世古亚洲洋闭合前洋壳俯冲消减作用的产物。  相似文献   

9.
西南天山下二叠统小提坎立克组火山岩地球化学特征   总被引:3,自引:1,他引:2  
小提坎里克组火山岩分布于西南天山南缘的塔里木微板块之塔里木北缘古生代活动陆缘,主要由中酸性陆相火山岩组成.地球化学特征显示:该岩石富碱、富钾,其中酸性火山岩稀土总量高,轻重稀土分异不明显,负Eu异常明显,稀土分布曲线呈显著"V"字形态,明显富集Rb,Th,K亏损Ba,相对富集Ce,Sm,而相对亏损Ta.地球化学特征表明该火山岩形成于板内伸展环境.通过锆石U-Pb测年获得(296.2±6.1)Ma的年龄数据,时代为早二叠世.综合南天山已有研究成果,小提坎里克组火山岩与分布于托什干河上游一带的早二叠世高钾钙碱性的巴雷公花岗岩属同源岩浆的产物,在早二叠世时,西南天山已演变为一个统一的区域伸展背景.由此可以推断,南天山晚古生代碰撞造山的峰期在早二叠世之前已结束,南天山古洋盆在早二叠世之前已经闭合.  相似文献   

10.
北京西山地区分布着大量的髫髻山组火山岩,区域上髫髻山组被东岭台组角度不整合覆盖。西山地区火山岩样品的主要氧化物含量变化范围比较大,如: SiO2=51.94%~77.30%,Al2O3=12.85%~19.17%,Na2O=1.65%~5.82%,K2O=0.83%~4.52%,Fe2O3 =0.95%~9.30%,CaO=0.13%~7.08%,且主要氧化物的含量与SiO2具有线性相关关系。同时,这些火山岩具有LREE富集、HREE明显亏损、Eu异常不明显、高的Sr,Ba 含量和Sr/ Y,La/Yb 比值等特征。火山岩的钕同位素成分变化大,且相当富集(εNd=-11~-17),都分布在古老下地壳和富集地幔之间, 因此推断北京西山地区髫髻山组火山岩和东岭台组火山岩的形成与富集地幔起源的基性岩浆与古老下地壳组分相互作用有关。  相似文献   

11.
内蒙古西乌旗地区大石寨组火山岩时代及地球化学特征   总被引:4,自引:1,他引:3  
西乌旗地区大石寨组火山岩以流纹岩为主,LA-ICP-MS锆石U-Pb同位素测定结果及全岩主量、微量和稀土元素分析结果表明,本区流纹岩的年龄为280.3Ma±1.4Ma,形成于早二叠世;大石寨组火山岩属高钾过铝质钙碱性火山岩,其中SiO2、K2O、Al2O3含量均较高。稀土元素配分曲线总体向右缓倾斜,轻稀土元素相对于重稀土元素富集,Eu呈明显的负异常,重稀土元素亏损不明显。Rb、Th、U、K等大离子亲石元素富集明显,Ba表现为弱亏损,高场强元素具有明显的Ta、Sr、P及Ti亏损,Zr、Hf相对富集。研究认为,该地区流纹岩可能是由玄武岩、安山岩等中基性火山岩分离结晶作用形成的,且形成的构造环境为大陆边缘弧。  相似文献   

12.
桑桑地区林子宗群火山岩Sr、Nd同位素地球化学特征和SHRIMP锆石U-Pb地质年代学数据表明:①林子宗火山岩以高钾流纹岩为主,属于高钾钙碱性系列岩石,形成于49.8Ma±0.92 Ma,属于帕那组火山岩地层;②林子宗火山岩稀土元素配分模式较为一致,相对于HREE,强烈富集LREE;③林子宗火山岩具有相对低的初始Sr同位素值(87Sr/86Sr(i)=0.70488~0.70569)和较高的初始Nd值(εNd(i)=-1.38~-1.58);④总体上富集大离子亲石元素,亏损高场强元素,与岛弧型火山岩的地球化学特征类似。桑桑地区林子宗火山岩在形成过程中明显受到角闪石和斜长石分离结晶作用的影响。可能是俯冲的新特提斯洋板片断离或变陡,进而导致经历过俯冲交代作用的富集岩石圈地幔甚至局部下地壳发生部分熔融,形成的初始岩浆发生混合作用,并在近封闭条件下发生高度分离结晶作用的产物。结合已有的结果,认为冈底斯带南带普遍经历了50Ma左右的岩浆作用。  相似文献   

13.
Precambrian magmatism in the Biabanak-Bafq district represents an extensive sequence of mafic magmatic rocks. Major, trace and rare earth elements reveal that the low-Ti basement mafic rocks are magnesium tholeiite and low-Ti cover a mafic rock belongs to Fe-tholeiite, whereas, the high-Ti alkaline mafic rocks, as well as dolerites, show much more Fe–Ti enrichment. Primitive mantle normalized trace element patterns show a relative enrichment of LREE and LILE and depletion of HFSE, but have an equally distinct continental signature reflected by marked negative Nb, Sr, P, and Ti anomalies. The composition of the intrusive rocks is consistent with fractional crystallization of olivine ± clinopyroxene ± plagioclase, whereas variations in the Sr and Nd isotope compositions suggest heterogeneous sources and crustal contamination. Low-Ti group samples contain a crustal signature in the form of high La/Yb, Zr/Nb, and negative \(\varepsilon \hbox {Nd}\) values. In contrast, high-Ti mafic magmatic rocks display an increase in La/Yb with a decrease in Proterozoic alkaline rocks recognized across the central Iran. The presence of diverse mafic magmatic rocks probably reflects heterogeneous nature of sub-continental lithospheric mantle (SCLM) source. The mafic magmatism largely represents magmatic arc or rift tectonic setting. It is suggested that the SCLM sources were enriched by subduction processes and asthenospheric upwelling.  相似文献   

14.
新疆塔县达布达尔地区二叠系神仙湾组位于塔阿西构造混杂岩带南侧,总体为一套深海复理石建造,主要以杂砂岩为主。源区岩石没有经过充分的搬运、分选,成熟度比较低。杂砂岩的稀土元素特征表现为轻稀土元素富集和Eu亏损明显的特征,与典型的后太古宙页岩和上地壳非常相似。微量元素含量也接近于大陆上地壳值,说明杂砂岩中的物源来自上地壳。沉积环境分析表明,杂砂岩母岩原岩为大量长英质火成物质和少量沉积物,其形成于深海厌氧环境。大地构造背景分析表明,杂砂岩物源区的构造背景以大陆岛弧为主,兼具活动大陆边缘的性质。结合区域地质构造背景,认为下-中二叠统神仙湾组为裂陷盆地沉积。  相似文献   

15.
Whole-rock chemistry and precise U – Pb zircon chronology have been used to determine the provenance of Archean greenschist-facies siliciclastic sedimentary rocks of the Diemals Formation in the Marda – Diemals area of the central Yilgarn Craton, Western Australia. Field evidence shows that these siliciclastic rocks are, at least in part, derived from uplift and erosion of underlying greenstones, and this is borne out by the similar La/Sc, Cr/Th and REE chemistry of Diemals Formation siltstones and some sandstones to mafic volcanic rocks of the underlying greenstones. The higher Cr/V and lower Y/Ni of some siltstones is consistent with input from ultramafic and mafic rocks. Diemals Formation sandstones and siltstones cannot be separated in terms of ratios such as Zr/La, and siliciclastic rock chemistry reflects provenance rather than the effects of transport and depositional processes, such as sorting. Chemistry does not support input to Diemals Formation sedimentary rocks from the Marda volcanic complex despite both units being close to each other, and having overlapping maximum depositional and crystallisation ages, respectively. Instead, it is likely that detritus for the two units was deposited in adjacent, physically discrete basins. Some Diemals Formation sandstones are geochemically similar to felsic rocks intruding the underlying greenstone succession, with higher La/Sc and lower Cr/Th, and LREE-enriched patterns with negative Eu anomalies. Support for a genetic relationship is shown by the overlap in the maximum depositional age of these sandstones with the crystallisation age of the geochemically identical Pigeon Rocks Monzogranite. Combined whole-rock chemistry and precise U – Pb zircon chronology indicates that Diemals Formation sedimentary rocks were in large part derived from the underlying mafic volcanic rocks, with progressive unroofing of this succession leading to erosion of felsic intrusive rocks, now represented by sandstones found at various levels in the Diemals Formation.  相似文献   

16.
库车河流域小提坎里克组火山岩主要为一套流纹岩建造,富碱(Na2O+K2O=6.89~8.46%)、高钾(K2O/Na2O=1.6~2.1)、铝含量12.83~14.78%(平均为14.18%),低钙(1.06~2.51%,平均为1.50%)、低镁(MgO=0.27~0.44%,平均为0.37%),Fe2O3*=1.29%~2.68%(平均为2.17%)。其铝饱和指数A/CNK为0.98~1.15,为过铝质高钾钙碱性-钾玄质花岗岩类。流纹岩的轻稀土强烈富集,重稀土亏损,明显富集Rb、Th、U、K、Pb等大离子亲石元素,亏损Sr、Nb、Ta、P、Ti等元素,具明显的铕负异常(δEu为0.46~0.54)。主微量元素特征显示其壳源成因,原岩为变质杂砂岩,源区有石榴石、角闪石、斜长石的残留。对两个流纹岩样品中的锆石进行LA-ICP-MS U-Pb年龄测定,获得288.3 Ma和290.3 Ma的形成年龄,与西部温宿和拜城地区的小提坎里克组火山岩为同期火山活动产物。该套火山岩具有同碰撞过铝质S型花岗岩特征,结合区域上广泛分布的二叠纪后造山花岗岩,认为西南天山洋至少在早二叠世已经闭合。  相似文献   

17.
Mafic to felsic gneisses along the northern margin of the North China Craton (NMNCC), in western Liaoning province, China, were previously assumed to be part of Archean metamorphic basement but are here identified as younger (Permian–Early Triassic) intrusions. LA–ICP–MS zircon U–Pb isotopic dating reveals that the magmatic precursors of the mafic gneisses were emplaced from 295 ± 3 to 259 ± 2 Ma and that the magmatic precursors of the dioritic and monzogranitic gneisses were emplaced at 267 ± 1 and 251 ± 2 Ma, respectively, thus recording a continuum of Permian to Early Triassic magmatism. The mafic and dioritic rocks exhibit zircon εHf(t) values from ?20.7 to ?3.3, suggesting they were mainly derived from a metasomatized lithospheric mantle source, possibly involving some crustal contamination. The monzogranitic rocks display their zircon εHf(t) values of +0.9 to +4.7, indicating the acidic magma was derived from partial melting of juvenile crustal materials from the depleted mantle source. Crustal model ages (T DM C ) obtained from zircon Hf isotopes of these monzogranitic rocks range from 976 to 1,215 Ma, with an average of 1,074 ± 32 Ma, possibly implying an episode of Grenvillian crustal growth in western Liaoning province. These new lines of evidence show that the NMNCC witnessed abundant magmatic activity and interaction of the crust and mantle during the Permian and Early Triassic and that the mafic magmatism was earlier than the monzogranitic activity. These findings indicate that the monzogranitic activity was the result of underplating of mafic magma with an enriched mantle source. In the context of regional Late Paleozoic to Early Mesozoic magmatic activity, the Permian magmatism occurred in an Andean-style continental margin setting when the Paleo-Asian oceanic plate was subducted beneath the NMNCC, and in this context, the Late Permian to Early Triassic magmatism may have been linked to post-collisional extension and asthenospheric upwelling, suggesting that the western Liaoning province in the NMNCC may be an eastward extension of the Late Paleozoic to Early Mesozoic active continental margin.  相似文献   

18.
The Yili Block is important for understanding the Late Paleozoic geodynamic evolution of Central Asia. It is bounded to the north by the Northern Tianshan Carboniferous flysch and ophiolitic mélange. The center of the Block is dominated by Carboniferous sedimentary rocks with intercalation of volcanic rocks. Petrological and geochemical features of these Carboniferous volcanic rocks show that: (1) they belong to the calc-alkaline series, (2) they display prominent Nb–Ta negative anomalies consistent with subduction-related magmas, and (3) HFSE-based discriminations place these volcanic rocks in the field of continental arcs. The depositional evolution of the sedimentary series shows evidence for Carboniferous sedimentation in a basin instead of rifting as previously proposed. All these evidences, together with the occurrence of contemporaneous turbidites and ophiolitic mélange along the northern boundary of the Yili Block, allow us to infer that the northern border of the Yili Block was a continental active margin during the Carboniferous. The Late Carboniferous southward subduction that finally closed the Late Devonian to Early Carboniferous North Tianshan oceanic basin was followed by Permian–Mesozoic polyphase transcurrent faulting.  相似文献   

19.
ABSTRACT

We report geochemical data and zircon SHRIMP U-Pb ages for Late Mesozoic granitoids from the western Zhejiang province and southern Anhui province (the WZSA region) from southeast China. In combination with published geochronological and geochemical data, the granitoids in the region can be divided into three stages: 171–141 Ma, 140–121 Ma, and 120–95 Ma. The first stage of these granitoids is mainly composed of granite porphyry and granodiorite which are similar to I-type granitoids, including having weakly negative Eu anomalies with enrichment in light rare earth elements (LREE), Rb, Th, and U. The second stage of granitoids consists of monzogranite, syenogranite, and granite with the characteristics of both A-type and I-type granitoids including strongly negative Eu anomalies; depletion of Ba, Sr, and Ti; and enrichment of K, Rb, and high field strength elements (HFSEs) (such as Th and U). The third stage of granitoids is mainly composed of granite, quartz monzonite, quartz diorite, and mafic rocks with weakly negative Eu anomalies and also enrichment in LREE, Rb, Th, U, and K. From our work, we propose a transition from compressional to extensional magmatism at ~141 Ma. Based on the geochemical characteristics of these granites and coeval mafic rocks, we propose that the formation of the A-type magmatism in the WZSA region formed as the result of lithospheric extension and asthenospheric upwelling during the Early Cretaceous.  相似文献   

20.
We have undertaken major and trace element analyses of volcanic rocks in Northeast China, as well as U–Pb dating and Hf isotopic analysis of their zircons, in order to determine the petrogenesis and tectonic setting of the volcanics. Mesozoic volcanism in the southern Manzhouli area occurred in two stages: Middle to Late Jurassic (164–147 Ma) and Early Cretaceous (142–123 Ma). The first stage is represented by the Tamulangou, Jixiangfeng, and Qiyimuchang formations. The Jixiangfeng Formation (162–156 Ma) is a rhyolite–trachyte dominated unit that lies between two basalt units, namely the underlying Tamulangou (164–160 Ma) and overlying Qiyimuchang (151–147 Ma) formations. The second igneous stage is dominated by rhyolitic lavas and tuffs of the Shangkuli Formation and basaltic rocks of the Yiliekede Formation, and they yield zircon U–Pb ages of 142–125 and 135–123 Ma, respectively. Basaltic rocks of the Tamulangou and Yiliekede formations have a wide range of MgO contents (1.64–9.59 wt%), but are consistently depleted of Nb and Ta and enriched with incompatible trace elements such as large ion lithophile elements (LILEs) and light rare earth elements (LREEs). Trachytes and rhyolites of the Jixiangfeng and Shangkuli formations are characterized by enrichment in LILEs and LREEs relative to HFSEs and HREEs, and with negative Nb, Ta, P, and Ti anomalies and positive ? Hf(t) values (3.49–9.98). These data suggest that basaltic volcanic rocks in southern Manzhouli were generated by fractional crystallization of a common parental magma, which was derived by partial melting of metasomatized (enriched) lithospheric mantle, whereas the trachytic and rhyolitic magmas were produced by the melting of lower crustal mafic and felsic granulites, respectively. Geochronological data indicate that Mesozoic volcanism in southern Manzhouli was initiated in the Middle to Late Jurassic and continued into the Early Cretaceous. It was mainly induced by lithospheric extension after the closure of the Mongol–Okhotsk Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号