首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
The Upper Triassic flysch sediments(Nieru Formation and Langjiexue Group)exposed in the Eastern Tethyan Himalayan Sequence are crucial for unraveling the controversial paleogeography and paleotectonics of the Himalayan orogen.This work reports new detrital zircon U-Pb ages and whole-rock geochemical data for clastic rocks from flysch strata in the Shannan area.The mineral modal composition data suggest that these units were mainly sourced from recycled orogen provenances.The chemical compositions of the sandstones in the strata are similar to the chemical composition of upper continental crust.These rocks have relatively low Chemical Index of Alteration values(with an average of 62)and Index of Compositional Variability values(0.69),indicating that they experienced weak weathering and were mainly derived from a mature source.The geochemical compositions of the Upper Triassic strata are similar to those of graywackes from continental island arcs and are indicative of an acidicintermediate igneous source.Furthermore,hornblende and feldspar experienced decomposition in the provenance,and the sediment became enriched in zircon and monazite during sediment transport.The detrital zircons in the strata feature two main age peaks at 225-275 Ma and 500-600 Ma,nearly continuous Paleoproterozoic to Neoproterozoic ages,and a broad inconspicuous cluster in the Tonian-Stenian(800-1200 Ma).The detrital zircons from the Upper Triassic sandstones in the study area lack peaks at 300-325 Ma(characteristic of the Lhasa block)and 1150-1200 Ma(characteristic of the Lhasa and West Australia blocks).Therefore,neither the Lhasa block nor the West Australia blocks likely acted as the main provenance of the Upper Triassic strata.Newly discovered Permian-Triassic basalt and mafic dikes in the Himalayas could have provided the 225-275 Ma detrital zircons.Therefore,Indian and Himalayan units were the main provenances of the flysch strata.The Tethyan Himalaya was part of the northern passive margin and was not an exotic terrane separated from India during the Permian to Early Cretaceous.This evidence suggests that the Neo-Tethyan ocean opened prior to the Late Triassic and that the Upper Triassic deposits were derived from continental crustal fragments adjacent to the northern passive continental margin of Greater India.  相似文献   

2.
ABSTRACT

This article reports the results of field mapping and the petrology of clastic rocks in the Dabure area, southern Qiangtang, Tibet, together with the results of U–Pb dating of detrital zircons from these rocks. The Dabure clastic rocks are characterized by low compositional and textural maturity, and they have been affected by lower greenschist facies metamorphism. The deposits exhibit the typical features of turbidites. Altogether, 279 detrital zircons were selected for U–Pb dating, and the ages fall into five groups: 550–650, ~800, 900–1100, 1600–1800, and 2300–2500 Ma. In general, the ages of the detrital zircons that are older than ~550 Ma are similar to those found elsewhere in the southern Qiangtang and Himalayan terranes. The most reliable youngest age of a detrital zircon from the Dabure clastic rocks is ~550 Ma. In the southern part of the Tibet Plateau, strata with the same ages and lithologies as the Dabure clastic rocks are widespread, especially in the Himalayan terrane. Combining our data with previous work on the basalts in the Dabure area (the Dabure basalts), we tentatively suggest that the Dabure clastic rocks represent the late Ediacaran (~550 Ma) sedimentary record for the Qiangtang terrane, and that before the late Neoproterozoic the southern Qiangtang terrane was possibly connected to the Himalayan terrane.  相似文献   

3.
In order to constrain the detrital provenance of the siliciclastic rocks, palaeogeographic variations, and crustal growth history of central China, we carried out simultaneously in situ U–Pb dating and trace element and Hf isotope analyses on 368 detrital zircons obtained from upper Permian–Triassic sandstones of the Songpan terrane, eastern Tibetan Plateau. Two groups of detrital zircons, i.e. magmatic and metamorphic in origin, have been identified based on cathodoluminescence images, zircon Ti-temperatures, and Th/U ratios. Our data suggest that the derivation of siliciclastic rocks in the Songpan terrane was mainly from the Qinling, Qilian, and Kunlun orogens, whereas the Yangtze and North China Cratons served as minor source areas during late Permian–Triassic times. The detrital zircons from Middle–Late Triassic siliciclastic rocks exhibit wide age spectra with two dominant populations of 230–600 Ma and >1600 Ma, peaking at ~1.8–1.9 Ga and ~2.4–2.5 Ga, suggestive of a derivation from the Qinling, Qilian, and Kunlun orogens and the Yangtze Craton being the minor source area. The proportions of detrital zircon populations from the northern Qinling, Qilian, and Kunlun orogens distinctly decreased during Middle–Late Triassic time, demonstrating that the initial uplift of the western Qinling occurred then and it could have blocked most of the detritus from the Qilian–northern Qinling orogens and North China Cratons into the main Songpan–Ganzi depositional basin. The relatively detrital zircon proportions of the Yangtze Craton source decreased during Early-Middle Late Triassic time, indicating that the Longmenshan orogen was probably being elevated, since the early Late Triassic and gradually formed a barrier between the Yangtze Craton and the Songpan terrane. In addition, our Lu–Hf isotopic results also reveal that the Phanerozoic magmatic rocks in central China had been the primary products of crustal reworking with insignificant formation of a juvenile crust.  相似文献   

4.
《Gondwana Research》2014,26(4):1680-1689
In southern Tibet, Late Triassic sequences are especially important to understanding the assembly of the Lhasa terrane prior to Indo-Asian collision. We report new data relevant to the provenance of a Late Triassic clastic sequence from the Mailonggang Formation in the central Lhasa terrane, Tibet. Petrographic studies and detrital heavy mineral assemblages indicate a proximal orogenic provenance, including volcanic, sedimentary and some ultramafic and metamorphic rocks. In situ detrital zircon Hf and U–Pb isotope data are consistent with derivation of these rocks from nearby Triassic magmatic rocks and basement that comprise part of the newly recognized Late Permian–Triassic Sumdo–Cuoqen orogenic belt. The new data suggests correlation with the Upper Triassic Langjiexue Group which lies on the opposing (southern) side of Indus–Yarlung ophiolite. Sediments from both the Mailonggang Formation and Langjiexue Group are interpreted to represent formerly contiguous parts of a sequence deposited on the southern flanks of the Sumdo–Cuoqen belt.  相似文献   

5.
《International Geology Review》2012,54(14):1754-1768
The Wudaogou Group in eastern Yanbian, Northeast China, plays a key role in constraining the timing and eastward termination of the Solonker–Xra Moron River–Changchun Suture, where the Palaeo-Asian Ocean closed. The Wudaogou Group consists of schist, gneiss, amphibolite, metasedimentary, and metavolcanic rocks, all of which underwent greenschist- to epidote–amphibolite-facies regional metamorphism, with some hornfels resulting from contact metamorphism. To determine the age of deposition, the timing and grade of metamorphism, and the tectonic setting of the Wudaogou Group, we investigated the petrography and geochronology of the metamorphic rocks in this group. Zircons from the metasedimentary rocks of this group can be divided into metamorphic zircons and detrital zircons of magmatic origin. U–Pb ages of metamorphic zircons dated by LA-ICP-MS vary from 249 ± 4 to 266 ± 4 Ma, approximating the age of regional metamorphism in the eastern Yanbian area. Detrital zircons yield U–Pb ages ranging from 253 ± 5 to 818 ± 5 Ma, and indicate that the provenance of the Wudaogou Group experienced four tectonic–thermal events between 818 and 253 Ma: Neoproterozoic (ca. 818–580 Ma), Cambro–Ordovician (ca. 500–489 Ma), Devonian–Carboniferous (ca. 422–300 Ma), and middle–late Permian (ca. 269–253 Ma). The youngest detrital zircon, with a U–Pb age of 253 ± 5 Ma, defines the maximum depositional age of the Wudaogou Group. The presence of the Cambro-Ordovician and Neoproterozoic detrital zircons implies that the source of the Wudaogou Group had an affinity with Northeast China, which leads us to conclude that the Solonker–Xra Moron River–Changchun Suture extends from Wangqing to Hunchun in eastern Yanbian, and that the Palaeo-Asian Ocean may have closed at the end of the Permian or Early Triassic period.  相似文献   

6.
藏东左贡-竹卡地区一些关键地层的时代和物源区示踪   总被引:1,自引:1,他引:0  
金鹭  王青  朱弟成  谢锦程  张亮亮 《岩石学报》2017,33(8):2523-2534
因地层时代和物源区缺乏有效约束,限制了对龙木错-双湖缝合带东向延伸的北澜沧江缝合带北段构造演化历史的认识。本文报道了位于北澜沧江缝合带北段藏东左贡-竹卡地区的酉西群、竹卡群和甲丕拉组的锆石U-Pb年龄数据,在酉西群变质砂岩和甲丕拉组砂岩中获得的最年轻碎屑锆石U-Pb年龄加权平均值分别为410±7Ma(n=3)和215±1Ma(n=2),将二者的最大沉积时代分别限定为早泥盆世和晚三叠世。竹卡群英安岩的锆石U-Pb年龄(240±1Ma)表明火山岩浆作用发生于中三叠世。碎屑锆石年龄频谱表明,酉西群兼具南羌塘地体约950Ma的碎屑锆石年龄指标和拉萨地体约1110Ma的年龄指标,表明其初始物源可能来自东冈瓦纳大陆内部印度大陆与南极洲之间的Eastern Ghats-Rayner和澳大利亚大陆和南极洲之间的Albany-Fraser-Bunger-Windmill造山带。甲丕拉组碎屑锆石最年轻的年龄峰值(225±2Ma;n=25)及其Hf同位素组成(-15.7~-4.2)与东达山岩基的相似性,指示甲丕拉组的物源很可能来自邻近的东达山岩基。甲丕拉组最年轻的碎屑锆石年龄(215Ma)与东达山岩基最年轻的花岗岩浆活动同期。这一结果,结合东达山地区甲丕拉组与下伏地层之间发生的与羌塘中央隆起带同期的区域性角度不整合事件,提出在北澜沧江北段的东达山地区,在东达山花岗岩基岩浆作用之后(约215Ma)甲丕拉组磨拉石沉积之前,很可能发生了快速隆升,与青藏高原羌塘中央隆起带的隆升剥露事件同期,可能受控于北澜沧江古特提斯洋壳板片的断离。  相似文献   

7.
LA-ICP-MS U-Pb dating and in situ Hf isotope analysis were carried out for the detrital zircons to constrain the depositional age and provenance of the Wawukuang Formation, which is believed as the earliest unit of the Laiyang Group in the Jiaolai Basin, and its implications. Most of these detrital zircons from the feldspar quartz sandstone in the Wawukuang Formation are magmatic in origin, which are euhedral-subhedral and display oscillatory zoning in CL images; whereas few Late Triassic detrital zircons are metamorphic in origin and structureless in CL images. U-Pb isotopic dating of 82 zircon grains yields age populations at ca. 129 Ma, 158 Ma, 224 Ma, 253 Ma, 461 Ma, 724 Ma, 1851 Ma and 2456 Ma. U-Pb dating and Hf isotopic results indicate that: 1) the Wawukuang Formation deposited during the Early Cretaceous (129-106 Ma); 2) the detrital zircons with the ages of 1851 Ma and 2456 Ma mainly sourced from the Precambrian basement rocks of the North China Craton; the Neoproterozoic (729-721 Ma) magmatic zircons and the Late Triassic (226-216 Ma) metamorphic zircons sourced from the Su-Lu terrane; The Late Paleozoic detrital zircons could source from the Late Paleozoic igneous rocks in the northern margin of the North China Craton; the Late Triassic (231-223 Ma) magmatic zircons and the 158-129 Ma zircons sourced from the coeval igneous rocks in the Jiaobei and Jiaodong; 3) the deposition age and provenance of the Jiaolai Basin are different from those of the Hefei Basin; 4) the recognition of clastic sediments from the Su-Lu terrane in the Wawukuang Formation suggests that the Su-Lu terrane was under denudation in the Early Cretaceous. ©, 2015, Science Press. All right reserved.  相似文献   

8.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

9.
Abstract

This article reports the depositional environment and provenance for the Tianquanshan Formation in the Longmuco–Shuanghu–Lancangjiang suture zone, and uses these to better understand the tectonic evolution of this region. Zircons in the andesite of the Tianquanshan Formation yielded concordia ages of 246, 247, and 254 Ma, indicating that the Tianquanshan Formation formed during the late Permian–Early Triassic. The Tianquanshan Formation consists of flysch and ocean island rock assemblages, indicating that the Longmuco–Shuanghu–Lancangjiang Palaeo-Tethys Ocean continued to exist as a mature ocean in the late Permian–Early Triassic. The detrital zircons in the greywackes of the Tianquanshan Formation yielded peak ages of 470–620, 710–830, 910–1080, 1450–1660, and 2400–2650 Ma, indicating the provenance of the Tianquanshan Formation was either Indian Gondwana or terranes that have an affinity with Indian Gondwana in the Tibetan Plateau (i.e. the Southern Qiangtang, Lhasa, and Himalayan terranes). The Ordovician quartzites, Carboniferous sandstones, Carboniferous–Permian diamictites, and the Upper Permian–Lower Triassic greywackes in the Southern Qiangtang, Lhasa, and Himalayan terranes all contain detrital zircons with youngest ages of ca. 470 Ma, indicating their source areas have been in a stable tectonic environment since the Ordovician, and this inference is supported by the continuous deposition in a littoral–neritic passive margin in these regions from the Ordovician to the lower Permian. Combining the present results with regional geological data, we infer that the Southern Qiangtang, Lhasa, and Himalayan terranes were all in a stable passive continental margin along the northern part of Indian Gondwana during the long period from the Ordovician to the early Permian. At early Permian, because of the opening of the Neo-Tethys Ocean, the tectonic framework of this region underwent a marked change to a rifting and active environment.  相似文献   

10.
运用碎屑锆石LA-ICP-MS U-Pb测年和地球化学方法,对内蒙古狼山东升庙和义和久地区侏罗系石拐群物源进行了探讨。通过对111颗有效锆石年龄统计分析可知,年龄峰值以晚古生代(259~308Ma)为主,其次为古元古代(1.74~2.18Ga)和早古元古代—新太古代(2.39~2.58Ga)。晚古生代年龄与狼山大规模出露的海西期岩浆岩年龄一致,古元古代—新太古代年龄与狼山地区古元古代岩浆岩、孔兹岩带年龄分布特征相近。侏罗系砂岩稀土元素配分特征与海西期岩浆岩、乌拉山群、孔兹岩系相似。结合石拐群样品薄片和砾岩分析,认为侏罗系为近源沉积,其物源主要为狼山地区大规模海西期岩浆岩,其次来自河套地区孔兹岩带,狼山地区太古宙乌拉山群、古元古代岩浆岩和早—中三叠世岩浆岩可能提供了部分物源。另外,根据碎屑锆石最年轻年龄为243Ma(中三叠世),结合前人植物化石组合研究及狼山地区整体缺失三叠纪地层的特点,认为该套地层的时代应为早—中侏罗世。狼山地区侏罗系沉积物源模式为南北两侧为隆起物源区,主要物源为北侧狼山隆起,南侧河套隆起向北提供部分物源,不同地区物源存在一定差异。  相似文献   

11.
林寺山组是胶莱盆地莱阳群底部重要的地层单元之一.准确限定其沉积时代与物源性质对于客观重建华北陆块东部晚中生代大地构造格局以及周缘造山带/前寒武纪变质基底晚中生代的折返过程具有重要的制约作用.以莱阳盆地蛇窝泊地区莱阳群林寺山组细砾岩为研究对象,对其开展了野外地质调查、岩相学观察、锆石U-Pb测年与锆石稀土元素分析等综合研究,并获得了如下初步认识.(1)林寺山组细砾岩中最小一组碎屑锆石加权平均年龄分别为129±1 Ma与127±5 Ma,结合区域上不整合于莱阳群之上青山群火山岩锆石谐和年龄为119±1 Ma,推测蛇窝泊地区林寺山组沉积时代介于127~119 Ma.(2)蛇窝泊地区林寺山组细砾岩的碎屑锆石年龄变化于2 858~126 Ma之间,并以新太古代晚期与白垩纪早期碎屑锆石为主.前古元古代的碎屑锆石主要来源于胶北前寒武纪变质岩,表明胶北太古宙-古元古代变质岩至少在白垩纪早期已折返至近地表.(3)160~120 Ma岩浆型碎屑锆石主要来源于胶东同时代的中酸性侵入体,暗示在白垩纪早期至少部分160~120 Ma中酸性侵入体已抬升至地表.(4)林寺山组发育少量的二叠纪(280 Ma)和印支期(213 Ma)变质锆石,表明胶东地区可能存在二叠纪约280 Ma区域变质-变形事件,同时暗示早白垩世苏鲁超高压变质岩已经折返到地表.   相似文献   

12.
《China Geology》2023,6(2):322-337
Accretionary complex study provides important knowledge on the subduction and the geodynamic processes of the oceanic plate, which represents the ancient ocean basin extinction location. Nevertheless, there exist many disputes on the age, material source, and tectonic attribute of the Lancang Group, located in Southwest Yunnan, China. In this paper, the LA-ICP-MS detrital zircon U–Pb chronology of nine metamorphic rocks in the Lancang Group was carried out. The U–Pb ages of the three detrital zircons mainly range from 590–550 Ma, 980–910 Ma, and 1150–1490 Ma, with the youngest detrital zircons having a peak age of about 560 Ma. The U–Pb ages of the six detrital zircons mainly range from 440–460 Ma and 980–910 Ma, and the youngest detrital zircon has a peak age of about 445 Ma. In the Lancang Group, metamorphic acidic volcanic rocks, basic volcanic rocks, intermediate-acid intrusive rocks, and high-pressure metamorphic rocks are exposed in the form of tectonic lens in schist, rendering typical melange structural characteristics of “block + matrix”. Considering regional deformation and chronology, material composition characteristics, and the previous data, this study thinks the Lancang Group may be an early Paleozoic tectonic accretionary complex formed by the eastward subduction of the Changning-Menglian Proto-Tethys Ocean, which provides an important constraint for the Tethys evolution.©2023 China Geology Editorial Office.  相似文献   

13.
玉石沟地区位于青藏高原东北缘,大地构造属于北祁连造山带南缘,其石炭纪—三叠纪是上叠盆地发育时期,表现为浅海相、海陆交互相至陆相稳定型沉积建造。对玉石沟北部紫红色粗砂岩样品进行LA-ICP-MS碎屑锆石U-Pb测年,其年龄结果主要分布在4个区间:260~350 Ma(峰值314 Ma)、400~500 Ma(峰值445 Ma)、1 700~2 000 Ma、2 200~2 600 Ma,800~1 000 Ma锆石数仅有2颗,另有1颗锆石为2 056 Ma。锆石CL图像显示:260~350 Ma锆石中既有变质锆石也有岩浆锆石,可能响应南祁连地区石炭纪—早二叠世的热事件。400~500 Ma锆石以岩浆锆石为主,表明北祁连造山带和中祁连地块广泛发育的弧岩浆岩和同碰撞花岗岩提供了物源。1 700~2 000 Ma和2 200~2 600 Ma锆石主要为变质锆石,反映了祁连地块基底变质岩的年龄信息,推测来源于基底变质岩的剥露。800~1 000 Ma年龄区间的锆石数量稀少,可能反映新元古代侵入体在该组沉积时期尚未大规模剥露。砂岩中最年轻的锆石年龄为(289±2)Ma,限定了其沉积时代的下限为早二叠世,结合实测地层剖面上的岩石组合和层序变化,将之归属于上二叠统红泉组。碎屑锆石年龄结构表明玉石沟地区红泉组兼具北祁连造山带和中—南祁连地块的年龄信息,红泉组沉积物可能具有南、北两个物源区。  相似文献   

14.
U–Pb zircon analyses from three meta-igneous and two metasedimentary rocks from the Siviez-Mischabel nappe in the western Swiss Alps are presented, and are used to derive an evolutionary history spanning from Paleoarchean crustal growth to Permian magmatism. The oldest components are preserved in zircons from metasedimentary albitic schists. The oldest zircon core in these schists is 3.4 Ga old. Detrital zircons reveal episodes of crustal growth in the Neoarchean (2.7–2.5 Ga), Paleoproterozoic (2.2–1.9 Ma) and Neoproterozoic (800–550 Ma, Pan-African event). The maximum age of deposition for the metasedimentary rocks is given by the youngest detrital zircons within both metasedimentary samples dated at ~490 Ma (Cambrian-Ordovician boundary). This is in the age range of two granitoid samples dated at 505 ± 4 and 482 ± 7 Ma, and indicates sedimentation and magmatism in an extensional setting preceding an Ordovician orogeny. The third felsic meta-igneous rock gives a Permian age of intrusion, and is part of a long-lasting Variscan to post-Variscan magmatic activity. The zircons record only minor disturbance of the U–Pb system during the Alpine orogeny.  相似文献   

15.
ABSTRACT

The Vorontsovka terrane (VT) is an important component of the East Sarmatian Orogen (ESO) which divides the Precambrian cores of the Sarmatian and Volgo-Uralia segments of the East European Craton (EEC). The tectonic framework of the VT remains controversial due to poor constraints from geochemical and geochronological studies. In this article we present detrital zircon U–Pb ages and geochemical features of the Precambrian meta-sedimentary rocks from the VT, which occur interlayered with calc-silicate rocks and metabasites. Most of the zircons from metasediments possess oscillatory zoning and high Th/U ratios (>0.2), indicating magmatic provenance. Their 207Pb/206Pb ages cluster around 2093 ± 7, 2126 ± 7, 2158 ± 12, 2189 ± 16, and 2210 ± 31 Ma, correlating with the ages of magmatic zircon cores from the surrounding igneous suites, and reflecting a single tectono-magmatic cycle (~2200–2100 Ma) in the source area. Age of the youngest detrital zircon grain from the metasedimentary rocks and the cores of zircon grains from igneous suites show 207Pb/206Pb ages at 2094 and 2106 Ma, respectively. Together with the largest age clusters of 2126 ± 7 and 2158 ± 12 Ma of the magmatic cores of the detrital zircons, the timing of sedimentation is inferred as ~ 2100–2170 Ma.

The metapelites display strong rare earth element fractionation with variable Eu anomalies ((La/Yb)N = 7.0–14.5, Eu/Eu* = 0.49–1.23). In contrast, the calc-silicate rocks and metabasites lack Eu anomalies ((La/Yb)N = 5.2–11.5, Eu/Eu* = 0.87–1.00). The large-ion lithophile (LILE) and high field strength element (HFSE) concentrations of most samples are comparable with those of the upper continental crust (UCC). The rocks possess negative anomalies of Th, Nb, Sr, and Zr relative to UCC. Their high Index of Compositional Variability (0.85–1.32, up to 1.8 in metabasites) and relatively low Chemical Index of Alteration (46.1–70.4) indicate that the metapelitic sediments were immature to weakly immature and probably underwent minor chemical weathering. The protoliths of the metabasites are interpreted as interlayered volcano-sedimentary and pyroclastic material. Relict clastic textures of the VT rocks, their geochemical features, and the grain morphology of detrital zircons suggest that the sediments were derived from intermediate and felsic provenances, which were most likely deposited in an environment with active volcanism. We envisage an active continental margin setting in the southwestern part of the Volgo-Uralia segment of the EEC related to the assembly of the Palaeoproterozoic Columbia supercontinent. Combined with recent data from surrounding terranes of the ESO, our results suggest that the VT represents an accretionary prism along a continental arc within the Sarmatia and Volgo-Uralia oceanic realm in the Palaeoproterozoic.  相似文献   

16.
王舫  刘福来  冀磊  刘利双 《岩石学报》2017,33(9):2975-2985
澜沧群出露于滇西"三江"地区的南段,其主要岩石由遭受低级变质作用改造的泥质岩和基性火山岩组成。这些岩石普遍经历了古特提斯洋的闭合以及随后的洋陆俯冲过程,是研究古特提斯洋俯冲-碰撞过程的重要窗口。但是有关澜沧群的形成时代、物质来源以及形成的构造背景等一系列问题长期以来存在着多种争议。本文对澜沧群中3件石英岩和1件绢云母变质石英砂岩样品中分选出的碎屑锆石进行了阴极发光图像分析和LA-ICP-MS U-Pb年代学研究。澜沧群浅变质岩系碎屑锆石具有明显或弱的振荡环带和较高的Th/U比值,表明岩浆成因。年代学分析结果表明,4件浅变质岩石样品均得到了两组主要年龄峰值,分别为530Ma和930Ma、570Ma和915Ma、540Ma和960Ma、570Ma和910Ma。本次研究中碎屑锆石U-Pb年龄主要分布在570~530Ma和960~910Ma。其中,最年轻的碎屑锆石年龄峰值~530Ma,支持了前人认为澜沧群沉积时代为中奥陶纪(462~454Ma)的认识。本研究中澜沧群浅变质岩系碎屑锆石年龄分布特征表明源区可能主要为泛非期和罗迪尼亚超大陆聚合-裂解过程中形成的岩浆岩。碎屑锆石磨圆较好指示其经历了较长距离的搬运。澜沧群浅变质岩系碎屑锆石与羌塘、特提斯喜马拉雅和拉萨地体变沉积岩或地层中碎屑锆石具有相似的年龄分布特征,表明它们可能具有相似的源区。  相似文献   

17.
U–Pb dating of detrital zircons was performed on mélange-hosted lithic and basaltic sandstones from the Inthanon Zone in northern Thailand to determine the timing of accretion and arc activity associated with Paleo-Tethys subduction. The detrital zircons have peak ages at 3400–3200, 2600–2400, 1000–700, 600–400, and 300–250 Ma, similar to the peaks ages of detrital zircons associated with other circum-Paleo-Tethys subduction zones. We identified two types of sandstone in the study area based on the youngest detrital zircon ages: Type 1 sandstones have Late Carboniferous youngest zircon U–Pb ages of 308 ± 14 and 300 ± 16 Ma, older than associated radiolarian chert blocks within the same outcrop. In contrast, Type 2 sandstones have youngest zircon U–Pb ages of 238 ± 10 and 236 ± 15 Ma, suggesting a Middle Triassic maximum depositional age. The youngest detrital zircons in Type 1 sandstones were derived from a Late Carboniferous–Early Permian ‘missing’ arc, suggesting that the Sukhothai Arc was active during sedimentation. The data presented within this study provide information on the development of the Sukhothai Arc, and further suggest that subduction of the Paleo-Tethyan oceanic plate beneath the Indochina Block had already commenced by the Late Carboniferous. Significant Middle Triassic arc magmatism, following the Late Carboniferous–Early Permian arc activity, is inferred from the presence of conspicuous detrital zircon U–Pb age peaks in Type 2 sandstones and the igneous rock record of the Sukhothai Arc. In contrast, only minimal arc activity occurred during the Middle Permian–earliest Triassic. Type 1 sandstones were deposited between the Late Permian and the earliest Triassic, after the deposition of associated Middle–Late Permian cherts that occur in the same mélanges and during a hiatus in Sukhothai Arc magmatism. In contrast, Type 2 sandstones were deposited during the Middle Triassic, coincident with the timing of maximum magmatism in the Sukhothai Arc, as evidenced by the presence of abundant Middle Triassic detrital zircons. These two types of sandstone were probably derived from discrete accretionary units in an original accretionary prism that was located along the western margin of the Sukhothai Arc.  相似文献   

18.
Detrital zircon U–Pb age distributions derived from samples representing ancient or relatively young large-scale continental drainage networks are commonly taken to reflect the geochronological evolution of the tapped continental area. Here, we present detrital zircon U–Pb ages and associated heavy mineral data from Pleistocene Rhine River Middle Terrace sands and equivalents between the Swiss–German border and Cologne in order to test the commonly assumed Alpine provenance of the material. Samples from eight localities were analyzed for their heavy mineral assemblages. Detrital zircon U–Pb ages were determined by laser ablation inductively coupled mass spectrometry on selected samples from five locations along the Rhine River. The zircon age populations of all samples show a similar distribution, their main peaks being between 300 and 500 Ma. Minor age populations are recognized at 570 and 1,070 Ma. The 300–400 Ma maximum reflects the Variscan basement drained by or recycled into the Rhine River and its tributaries. The 400–500 Ma peak with predominantly Early Silurian ages points to Baltica or to the mid-German crystalline rise as original sources. One distinct peak at c. 570 Ma probably represents input from Cadomian terranes. The Precambrian U–Pb ages are compatible with derivation from sources in Baltica and in northern Gondwana. The heavy mineral populations of Middle Terrace sands and equivalents are characterized to a variable extend by garnet, epidote, and green hornblende. This association is often referred to as the Alpine spectrum and is considered to be indicative of an Alpine provenance. However, hornblende, epidote, and garnet are dominant heavy minerals of collisional orogens in general and may also be derived from Variscan and Caledonian units or from intermittent storage units. A remarkable feature of the detrital zircon age distribution in the Rhine River sediments from the Swiss–German border to Cologne is the absence of ages younger than 200 Ma and in particular of any ages reflecting the Alpine orogeny between c. 100 and 35 Ma. Sediments from rivers draining the equally collisional Himalaya orogen contain detrital zircons as young as 20 Ma. Our results question the assumption that Pleistocene Rhine River sediments were directly derived from the Alps. The lag time between the formation and deposition age of the youngest zircon in the studied Pleistocene Rhine River deposits is 200 Ma. Together with the absence of Alpine zircon ages, this stresses that detrital zircon age data from ancient sedimentary units found in poorly understood tectonic or paleogeographic settings need to be interpreted with great care, one could miss an entire orogenic cycle.  相似文献   

19.
华夏陆块早古生代沉积记录对于了解华南陆块在Gondwana超大陆演化过程中所起的作用具有重要意义。本文对广东省中山市神湾地区下寒武统八村群开展了锆石年代学和元素地球化学研究。结果表明,八村群变泥质粉砂岩的碎屑锆石年龄可分为4034~3122 Ma、2765~2250 Ma、1765~1443 Ma、1126~901 Ma、884~773 Ma以及595~547 Ma六组,其中最年轻的一组碎屑锆石加权平均年龄将该地层的最大沉积时间限定在551±4 Ma。锆石的Hf同位素特征则指示八村群沉积物源可能以古老地壳物质再循环为主,伴少量初生地壳物质。八村群变粉砂岩和变泥岩样品的化学风化指数(CIA)和成分成熟度(ICV)分别为79. 8~86. 4和0. 39~0. 87,均表明源区经历了相对强烈的化学风化作用。元素地球化学结果显示,八村群样品强烈富集不相容元素,而亏损Ni、Cr和Co等,指示八村群源区可能以活动大陆边缘构造背景下的长英质岩石为主。综合对比八村群与世界其他陆块同时期沉积地层的碎屑锆石年龄组成,本文认为八村群代表了新元古代晚期至早古生代早期Gondwana超大陆聚合过程中造山作用的沉积响应,支持华夏陆块位于Gondwana超大陆北缘,靠近北印度板块和羌塘地体,是该超大陆的重要组成部分。  相似文献   

20.
Neoproterozoic sedimentary sequences in the South China Block provide great opportunity to examine the tectonic evolution and crustal accretion during this period. This study presents U–Pb ages and Hf isotope composition of detrital zircons and Nd isotope composition of whole rocks of the Neoproterozoic sequences from the Yangtze Block, part of the South China Block. Age patterns of detrital zircons imply that the source area experienced three major periods of magmatic activity at 2,300–2,560, 1,900–2,100 and 770–1,000?Ma and two major episodes of juvenile crust accretion at 2,600–3,400 and 770–1,000?Ma. The maximum age of the Gucheng glaciation can be restricted at?~768?Ma from the youngest detrital zircon ages, probably corresponding to the Kaigas glaciation rather than to the Sturtian glaciation. High La/Sc ratio and low Cr/Th, Sc/Th and Co/Th ratios of the sedimentary rocks point to a derivation from dominantly felsic upper continental crustal sources, whereas large variation of εNd(t) and εHf(t) values indicates that mantle-derived magmatic rocks also provided material to the sedimentary sequences in different degrees. The shift in εNd(t) values of whole rocks and U–Pb age spectra of detrital zircons records the evolution from a back-arc to retro-arc foreland to a rift basin. Age distribution of detrital zircons from the Neoproterozoic sequences, compared with those of the major crustal blocks of Rodinia, implies that the position of the Yangtze Block was probably adjacent to northern India rather than between Australia and Laurentia before the breakup of the Rodinia supercontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号