首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
藏北羌塘南部埃迪卡拉系达布热组的建立及其地质意义   总被引:1,自引:0,他引:1  
王明  曾孝文  李才  李航  解超明  范建军 《地质通报》2018,37(8):1379-1386
羌塘位于青藏高原腹地,构造上处于冈瓦纳大陆北缘。因其特殊的构造位置,羌塘地体的起源及构造演化对于探讨青藏高原的早期形成演化、冈瓦纳大陆裂解,以及特提斯洋演化等关键科学问题至关重要。最近,在羌塘南部达布热地区发现一套碎屑岩夹玄武岩的岩石组合,碎屑岩具有低成分成熟度的特点,虽然岩石发生了低绿片岩相变质,但仍然保留了原岩类复理石沉积的特点。根据碎屑锆石定年结果,该套地层中碎屑锆石的最年轻年龄为550Ma左右。此外,该套地层中玄武岩夹层的测年结果表明,该套地层形成于埃迪卡拉纪(约550Ma)。结合地层剖面及区域地层对比,建立了埃迪卡拉纪达布热组。达布热组是羌塘地区首次发现的埃迪卡拉纪地层,该组地层的建立为探讨冈瓦纳大陆北缘构造演化提供了重要线索。  相似文献   

2.
《International Geology Review》2012,54(14):1791-1805
Newly discovered basalts in the Dabure area (central Qiangtang block, northern Tibet) were subjected to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb zircon dating, geochemical analyses, and zircon Hf isotope analyses. Dating of magmatic zircons from three basalt samples indicates that the Dabure basalts formed during the late Ediacaran (~550 Ma). Xenocrystic zircons yield ages of 700–1150 Ma, providing evidence of the Cryogenian crust in the Tibet block. The Dabure basalts are alkaline, rich in Ti and Fe, and are strongly enriched in light rare earth elements without Eu anomalies. The basalts are geochemically similar to within-plate basalts but are relatively depleted in Nb and Ta. Although the analysed zircons show differences in their Hf isotope compositions, the geochemical data suggest that the Dabure basalts were derived from enriched mantle and that the source magmas were contaminated by the continental crust. The basalts may have erupted during rifting at ~550 Ma (from the dating of magmatic zircons), and may have been a product of the initial breakup of Gondwanaland.  相似文献   

3.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

4.
ABSTRACT

To determine the Late Palaeozoic evolution of the Lhasa terrane, we report the results of field mapping, petrological and fossil investigations, and U–Pb dating of detrital zircon grains (n = 474) from lower-greenschist-facies clastic rocks of the Lagar Formation in the Baruo area, Tibet. Our results indicate that the Lagar Formation was deposited during the Late Carboniferous to Early Permian in a shallow-marine environment on the northern margin of Gondwana. Glacial marine diamictites are common within the Lagar Formation and record glaciation of Gondwana during the Late Palaeozoic. Moreover, the detrital materials of the Lagar formation originated mostly from the collision orogenic belt. The ages of detrital zircon grains from the Lagar Formation make up five main groups with ages of 410–540 Ma, 550–650 Ma, 800–1100 Ma, 1600–1800 Ma, and 2300–2500 Ma, which display three characteristic age peaks at ~1150, 2390 and 2648 Ma. We tentatively suggest that the Lhasa terrane was a shallow-marine basin under the influence of the Gondwanan glaciation during the Late Carboniferous–Early Permian.  相似文献   

5.
仲巴微地体夹持在拉萨地块和特提斯喜马拉雅之间,两侧均被蛇绿混杂岩带所围限,是雅鲁藏布江西段重要的地质单元。揭示其构造亲缘性对于探讨新特提斯洋构造演化和青藏高原多地体拼合过程具有重要意义。仲巴微地体中段马攸木地区较好地出露一套志留系—石炭系沉积地层,其中志留系为片理化钙质片岩、大理岩夹砂岩,泥盆系为一套片理化的结晶灰岩夹钙质片岩,石炭系为一套砂岩、粉砂岩夹钙质片岩的碎屑岩组合。碎屑锆石年代学数据表明,志留系、泥盆系和石炭系均表现出约530 Ma和950 Ma的特征年龄峰值,年龄分布样式与西羌塘地体和喜马拉雅地体具有高度的相似性,缺乏拉萨地体以约1 170 Ma的特征的年龄峰值。结合区域地层对比,认为在志留纪—石炭纪,仲巴微地体具有明显的喜马拉雅亲缘性,其构造位置临近印度大陆北缘,是西羌塘—大印度—特提斯喜马拉雅构造体系的一部分。  相似文献   

6.
藏北羌塘奥陶纪平行不整合面的厘定及其构造意义   总被引:7,自引:5,他引:2  
杨耀  赵中宝  苑婷媛  刘焰  李聪颖 《岩石学报》2014,30(8):2381-2392
西藏羌塘块体有无变质基底、其前新生代构造属性与演化过程是长期争论的议题。本文报道南羌塘块体北部,中、上奥陶统塔石山组底砾岩平行不整合于浅变质中厚层石英砂岩夹薄层泥灰岩之上。近600粒碎屑锆石测年结果表明浅变质石英砂岩的最大沉积年龄为527±7Ma,300余粒碎屑锆石测年结果表明塔石山组底部石英砂岩的最大沉积年龄为471±6Ma。不整合面上、下石英砂岩最大沉积年龄之差达56Myr,表明这两套石英砂岩之间存在明显的沉积间断,证实了该平行不整合面的时代为奥陶纪早期。另一独立的证据是在邻区发现了早奥陶世花岗岩类岩石(471~477Ma)侵位于该浅变质石英岩,因此将不整合面之下的浅变质石英岩暂命名为荣玛组,归入寒武系地层。阴极发光与年代学研究进一步表明不整合面之上的碎屑锆石主要来源于在"泛非"运动晚期形成的结晶岩,为近源锆石,表明"泛非运动"晚期所形成的结晶岩在奥陶纪早期就已隆升,遭受剥蚀,为区内中上奥陶统沉积岩的形成提供物质来源。该奥陶纪平行不整合面的发现,表明南羌塘块体与喜马拉雅、拉萨等块体相似,同属冈瓦纳大陆体系。南、北羌塘早古生代地层系统之间的显著差异表明在寒武-奥陶纪之交,南、北羌塘块体就已被古大洋盆分隔开,开始各自独立演化。  相似文献   

7.
富含继承锆石的过铝质花岗岩一般来源于富铝质岩石(如变泥质岩)的部分熔融,因而分析这些继承锆石的U-Pb年龄可以像分析沉积岩碎屑锆石的U-Pb年龄一样,提供过铝质花岗岩源区物质中碎屑沉积物物源区的丰富信息。本文报道了中部拉萨地块早侏罗世过铝质花岗岩的全岩地球化学和锆石U-Pb年代学数据,结合拉萨地块已有二叠纪和晚三叠世过铝质花岗岩的继承锆石年代学数据,总结了目前已有的拉萨地块过铝质花岗岩的继承锆石U-Pb年龄特征(共199个谐和测点)。这些过铝质花岗岩属强过铝质S型花岗岩,其中的继承锆石定义了1250~1100Ma(峰值1181±14Ma)和550~450Ma(峰值494±7Ma)2个最突出的年龄群,分别可比于拉萨地块古生代沉积岩的碎屑锆石年龄峰值(约1170Ma)和寒武纪火山岩的侵位时代,明显不同于西羌塘、安多和特提斯喜马拉雅新元古代-古生代沉积岩中的碎屑锆石年龄频谱。拉萨地块过铝质花岗岩中约1181Ma的继承锆石,可能与拉萨地块古生代沉积岩中的同期碎屑锆石一样,都来自澳大利亚南西部Albany-Fraser造山带和东南极Wilkes等地,而约494的继承锆石,既可能来自澳大利亚西部,也可能来自拉萨地块本地。本文提供了拉萨地块与澳大利亚大陆北缘具有古地理联系的过铝质花岗岩继承锆石U-Pb年龄证据。拉萨地块的研究实践表明,采用过铝质花岗岩继承锆石和古生代沉积岩碎屑锆石相结合的锆石U-Pb年代学方法,可为重建冈瓦纳大陆北缘其它微陆块的古地理和构造岩浆演化提供重要约束。  相似文献   

8.
青藏高原北部古近纪晚期大面积发育唢呐湖组湖相沉积,主要为砖红色、棕色、灰白色泥灰岩、泥岩、粉砂岩互层,夹石膏层和灰岩,广泛出露于羌塘中部、可可西里、东昆仑南部,形成时代为41.1±0.8~32.5!0.3Ma,向可可西里东部过渡为雅西错群。对双湖采坑唢呐湖组上部湖相沉积地层进行详细观测和系统取样,对泥灰岩和粘土岩样品选碎屑锆石作LA-MC-ICP-MS U-Pb同位素测年,对不同层位泥灰岩、粘土岩、灰岩样品作碳、氧同位素分析,结合区域地质相关资料,良好揭示了碎屑锆石来源、沉积地貌环境及古海拔高度。双湖采坑唢呐湖组碎屑锆石绝大部分为岩浆锆石,统计分析碎屑锆石U-Pb年龄,发现存在4期峰值,分别为280~200Ma、780~830Ma、1920~1790Ma、2600~2360Ma;对比区域地质和岩浆岩测年资料,推断晚二叠世—三叠纪(280~200Ma)碎屑锆石主要来自于羌中隆起岩浆岩,新元古代中期(~800Ma)、古元古代晚期(~1800Ma)、太古宙末期—古元古代初期(~2500Ma)碎屑锆石主要来自于东昆仑造山带。双湖采坑碎屑锆石部分测点U-Pb同位素呈线性分布,交点年龄及谐和年龄为1883!51~1837!12Ma、2483!24~2520!37Ma,对应东昆仑造山带早前寒武纪2期岩浆热事件年龄。根据唢呐湖组湖相沉积空间分布和碎屑锆石U-Pb年龄统计分布,推断青藏高原北部古近纪晚期发育自北向南流动的古水系,古洪流将东昆仑造山带出露地表的前寒武纪基底岩浆锆石自北向南长距离搬运,汇聚于双湖古湖盆并沉积于唢呐湖组。根据双湖采坑唢呐湖组湖相沉积碳同位素和氧同位素,估算双湖古湖盆35~34Ma古海拔高度为3427~3510m,这与应用Airy均衡模式根据地壳厚度和密度变化估算的古海拔高度在误差范围内基本吻合。  相似文献   

9.
ABSTRACT

The Upper Triassic Langjiexue Group, which lies immediately south of the Yarlung-Tsangpo Suture Zone in the Shannan area of southeastern Tibet, represents an important part of the Tethyan Himalayan Sequence (THS). Its provenance and palaeogeography have been the subject of debate. We present new data on petrographic composition, whole-rock geochemistry, and detrital zircon U–Pb geochronology to constrain the provenance of the Langjiexue Group. The dominance of quartz grains and felsic volcanic lithic fragments suggests that the sandstones are litho-quartzose. The trace element geochemical signatures (V–Ni–Th*10, Co/Th–La/Sc, Eu/Eu*–Th/Sc) suggest derivation from felsic igneous sources. The detrital zircon age spectra display three major peaks: a Meso-to-Neoproterozoic peak (1200–900 Ma, 7–18%), a Neoproterozoic-to-Late Cambrian peak (750–500 Ma, 32–65%), and a Late Carboniferous-to-Late Triassic peak (300–200 Ma, 11–33%). The maximum depositional age of early Carnian (236–235 Ma) is obtained by calculating weighted average ages of the youngest zircons (≤250 Ma). The youngest age cluster (300–200 Ma) is incompatible with sources from neighbouring terranes, including the South Qiangtang terrane, Lhasa terrane, THS, and Higher Himalayan Crystalline. Correlations of the Permian–Triassic zircons with those of time-equivalent strata in northwest Australia, west Burma, and the Banda Arc unveil a potential connection to the Tasmanides along the convergent margin of eastern Australia. The New England Orogen (300–230 Ma) could have supplied the Langjiexue Group with magmatic materials via continent-scale drainage systems or a submarine fan complex. This scenario provides a new perspective into the transport of detritus from distal orogens to sedimentary basins thousands of kilometres away.  相似文献   

10.
ABSTRACT

The Tibetan Plateau is located in the eastern Himalayan–Alpine orogen, an area where previous research has focused on ophiolites and a high-pressure metamorphic belt, whereas comparatively little research has been undertaken on the Tibetan basement. Cambrian granitic gneiss crops out in the Duguer area of the South Qiangtang terrane in northern Tibet and yields zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb ages of 502–492 Ma, providing insight into the possible existence of basement rocks within the South Qiangtang terrane. The granitic gneisses are geochemically similar to high-K, calc-alkaline S-type granites, and Hf isotopic analysis of zircons within the gneisses yields negative εHf(t) values (–7.4 to – 1.1) and old zircon Hf model ages (TDMC = 1757–1406 Ma). These granitic gneisses were generated by partial melting of ancient pelitic rocks, and the resulting melts were contaminated by a small amount of mantle-derived material. Combining our new data with previous research, we conclude that these Cambrian granitic gneisses developed in a post-collisional tectonic setting after Pan-African tectonism. This suggests that the South Qiangtang terrane might have the same early Palaeozoic crystalline basement as the Lhasa, Himalaya, Baoshan, Gongshan, and Tengchong terranes.  相似文献   

11.
滇西潞西地区位于青藏高原东南缘,大地构造位置上属于保山地体。由于新生代强烈的陆内变形作用,保山地体与青藏高原腹地体的对应关系难以确定。野外观察及LA-ICP-MS锆石U-Pb测年结果表明,潞西新元古代—早古生代地层(震旦系—寒武系蒲满哨群及下奥陶统大矿山组)大部分碎屑锆石Th/U0.1,说明其大多为岩浆成因。U-Pb年龄跨度较大,太古宙—早古生代都有分布,且具有明显的562Ma、892Ma及2265Ma年龄峰,以及较弱的1680Ma和2550Ma年龄峰。保山地体潞西地区沉积岩碎屑锆石年龄分布特征与特提斯喜马拉雅、南羌塘沉积地层碎屑锆石年龄分布特征相似,说明其具有相同的物源——冈瓦纳大陆北部的印度大陆。在新元古代晚期—早古生代,保山地体位于印度大陆北缘,与南羌塘、喜马拉雅地体相邻。伴随着俯冲相关的增生造山过程,保山地体形成相应的新元古代末期—早古生代沉积地层。  相似文献   

12.
王舫  刘福来  冀磊  刘利双 《岩石学报》2017,33(9):2975-2985
澜沧群出露于滇西"三江"地区的南段,其主要岩石由遭受低级变质作用改造的泥质岩和基性火山岩组成。这些岩石普遍经历了古特提斯洋的闭合以及随后的洋陆俯冲过程,是研究古特提斯洋俯冲-碰撞过程的重要窗口。但是有关澜沧群的形成时代、物质来源以及形成的构造背景等一系列问题长期以来存在着多种争议。本文对澜沧群中3件石英岩和1件绢云母变质石英砂岩样品中分选出的碎屑锆石进行了阴极发光图像分析和LA-ICP-MS U-Pb年代学研究。澜沧群浅变质岩系碎屑锆石具有明显或弱的振荡环带和较高的Th/U比值,表明岩浆成因。年代学分析结果表明,4件浅变质岩石样品均得到了两组主要年龄峰值,分别为530Ma和930Ma、570Ma和915Ma、540Ma和960Ma、570Ma和910Ma。本次研究中碎屑锆石U-Pb年龄主要分布在570~530Ma和960~910Ma。其中,最年轻的碎屑锆石年龄峰值~530Ma,支持了前人认为澜沧群沉积时代为中奥陶纪(462~454Ma)的认识。本研究中澜沧群浅变质岩系碎屑锆石年龄分布特征表明源区可能主要为泛非期和罗迪尼亚超大陆聚合-裂解过程中形成的岩浆岩。碎屑锆石磨圆较好指示其经历了较长距离的搬运。澜沧群浅变质岩系碎屑锆石与羌塘、特提斯喜马拉雅和拉萨地体变沉积岩或地层中碎屑锆石具有相似的年龄分布特征,表明它们可能具有相似的源区。  相似文献   

13.
LA-ICP-MS U-Pb dating and in situ Hf isotope analysis were carried out for the detrital zircons to constrain the depositional age and provenance of the Wawukuang Formation, which is believed as the earliest unit of the Laiyang Group in the Jiaolai Basin, and its implications. Most of these detrital zircons from the feldspar quartz sandstone in the Wawukuang Formation are magmatic in origin, which are euhedral-subhedral and display oscillatory zoning in CL images; whereas few Late Triassic detrital zircons are metamorphic in origin and structureless in CL images. U-Pb isotopic dating of 82 zircon grains yields age populations at ca. 129 Ma, 158 Ma, 224 Ma, 253 Ma, 461 Ma, 724 Ma, 1851 Ma and 2456 Ma. U-Pb dating and Hf isotopic results indicate that: 1) the Wawukuang Formation deposited during the Early Cretaceous (129-106 Ma); 2) the detrital zircons with the ages of 1851 Ma and 2456 Ma mainly sourced from the Precambrian basement rocks of the North China Craton; the Neoproterozoic (729-721 Ma) magmatic zircons and the Late Triassic (226-216 Ma) metamorphic zircons sourced from the Su-Lu terrane; The Late Paleozoic detrital zircons could source from the Late Paleozoic igneous rocks in the northern margin of the North China Craton; the Late Triassic (231-223 Ma) magmatic zircons and the 158-129 Ma zircons sourced from the coeval igneous rocks in the Jiaobei and Jiaodong; 3) the deposition age and provenance of the Jiaolai Basin are different from those of the Hefei Basin; 4) the recognition of clastic sediments from the Su-Lu terrane in the Wawukuang Formation suggests that the Su-Lu terrane was under denudation in the Early Cretaceous. ©, 2015, Science Press. All right reserved.  相似文献   

14.
刘文  吴建亮  雷传扬  王波  郎兴海 《岩石学报》2019,35(6):1738-1756
班公湖-怒江特提斯洋盆的闭合时限对理解班公湖-怒江结合带的构造演化意义重大。本文采用碎屑锆石年代学的方法,分析了班公湖-怒江结合带西段革吉地区沙木罗组下段与沙木罗组上段的物源特征及差异,为班公湖-怒江特提斯洋盆西段的闭合时间提供了新的证据。研究结果表明沙木罗组下段碎屑锆石年龄分布于2586±26Ma~130±1. 5Ma之间,显示出1个主峰年龄约165Ma,1个次峰年龄约240Ma。碎屑锆石年龄分6个组别,集中在2600~2400Ma、2000~1900Ma、1000~840Ma、500~400Ma、340~200Ma和200~130Ma,分别与新太古代克拉通汇聚事件、哥伦比亚超大陆相关的构造热事件、新元古代构造热事件、冈瓦纳大陆边缘安第斯型造山作用的岩浆活动事件、龙木错-双湖结合带岩浆活动事件和班公湖-怒江特提斯洋盆俯冲消减的岩浆活动事件一一对应。沙木罗组上段碎屑锆石年龄分布于2558±22Ma~101±1. 0Ma之间,显示出1个主峰年龄约107Ma,2个次峰年龄分别约226Ma、150Ma。碎屑锆石年龄集中分布于1个年龄组为122~101Ma,记录了班公湖-怒江特提斯洋盆俯冲消减的岩浆活动。通过与潜在源区的年龄谱峰进行对比,沙木罗组下段物源区与南羌塘地块有良好的亲缘性,表明其沉积物物源主要为南羌塘地块,其中南羌塘岩浆弧可能为其主要贡献者。沙木罗组上段物源区与南羌塘地块和北拉萨地块均具有良好的亲缘性,其沉积物物源具有双源性,分别来源于南羌塘岩浆弧和北拉萨岩浆弧。沙木罗组下段和上段沉积物物源的差异性暗示它们形成的沉积环境和物源区不同。对比分析沙木罗组下段和上段岩石学、碎屑锆石形态学等特征,也揭示了类似的差异性。结合其他相关地质资料,认为班公湖-怒江特提斯洋盆在革吉地区的主体闭合时间约115~110Ma,其代表性岩浆事件为南羌塘地块和北拉萨地块的早白垩世岩浆弧,沙木罗组为班公湖-怒江特提斯洋盆由俯冲消减到闭合过程中的沉积产物。  相似文献   

15.
冀西北怀安地体高级变质表壳岩的锆石年代学研究   总被引:4,自引:3,他引:1  
蔡佳  刘平华  冀磊  施建荣 《岩石学报》2017,33(9):2811-2826
位于华北克拉通中部造山带中北段的怀安地体与内蒙孔兹岩带相接,出露高压麻粒岩和退变榴辉岩等多种高级变质岩,是洞悉华北克拉通古元古代构造演化历史的重要窗口。研究区变质表壳岩包括夕线石榴长英质片麻岩、石榴长英质粒状岩石以及紫苏黑云二长片麻岩。阴极发光图像特征显示研究区样品的锆石主要包括碎屑锆石和变质锆石,其中碎屑锆石具有岩浆结晶环带,而变质锆石为单颗粒或围绕着继承性碎屑锆石边部生长,内部结构均匀,Th/U比值较低。锆石LAICP-MS U-Pb定年结果与前人研究结果综合表明该区变质表壳岩石的碎屑锆石的207Pb/206Pb年龄主要集中在~2040Ma,其原岩形成时代与孔兹岩带变泥质岩石相近,均为~2.0Ga。变质锆石记录其变质时代为1957~1804Ma,结合前人对怀安地区变泥质岩和变基性岩变质作用和年代学研究结果,推测得出1.95~1.92Ga代表了峰期(高压)麻粒岩相变质时代,1.90~1.85Ga代表峰后减压阶段变质时代,而1.85~1.80Ga代表退变质晚期的时代。怀安地区变质岩石可能卷入了阴山陆块、鄂尔多斯陆块以及东部陆块间的先后碰撞造山过程,并持续较长时间(1.95~1.80Ga),最终拼贴为统一的整体。  相似文献   

16.
In order to constrain the detrital provenance of the siliciclastic rocks, palaeogeographic variations, and crustal growth history of central China, we carried out simultaneously in situ U–Pb dating and trace element and Hf isotope analyses on 368 detrital zircons obtained from upper Permian–Triassic sandstones of the Songpan terrane, eastern Tibetan Plateau. Two groups of detrital zircons, i.e. magmatic and metamorphic in origin, have been identified based on cathodoluminescence images, zircon Ti-temperatures, and Th/U ratios. Our data suggest that the derivation of siliciclastic rocks in the Songpan terrane was mainly from the Qinling, Qilian, and Kunlun orogens, whereas the Yangtze and North China Cratons served as minor source areas during late Permian–Triassic times. The detrital zircons from Middle–Late Triassic siliciclastic rocks exhibit wide age spectra with two dominant populations of 230–600 Ma and >1600 Ma, peaking at ~1.8–1.9 Ga and ~2.4–2.5 Ga, suggestive of a derivation from the Qinling, Qilian, and Kunlun orogens and the Yangtze Craton being the minor source area. The proportions of detrital zircon populations from the northern Qinling, Qilian, and Kunlun orogens distinctly decreased during Middle–Late Triassic time, demonstrating that the initial uplift of the western Qinling occurred then and it could have blocked most of the detritus from the Qilian–northern Qinling orogens and North China Cratons into the main Songpan–Ganzi depositional basin. The relatively detrital zircon proportions of the Yangtze Craton source decreased during Early-Middle Late Triassic time, indicating that the Longmenshan orogen was probably being elevated, since the early Late Triassic and gradually formed a barrier between the Yangtze Craton and the Songpan terrane. In addition, our Lu–Hf isotopic results also reveal that the Phanerozoic magmatic rocks in central China had been the primary products of crustal reworking with insignificant formation of a juvenile crust.  相似文献   

17.
Age-dating of detrital zircons from 22 samples collected along, and adjacent to, the Yarlung-Tsangpo suture zone, southern Tibet provides distinctive age-spectra that characterize important tectonostratigraphic units. Comparisons with data from Nepal, northern India and the Lhasa and Qiangtang terranes of central Tibet constrain possible sources of sediment, and the history of tectonic interactions.Sedimentary rocks in the Cretaceous–Paleogene Xigaze terrane exhibit strong Mesozoic detrital zircon peaks (120 and 170 Ma) together with considerable older inheritance in conglomeratic units. This forearc basin succession developed in association with a continental volcanic arc hinterland in response to Neotethyan subduction under the southern edge of the Eurasia. Conspicuous sediment/source hinterland mismatches suggest that plate convergence along this continental margin was oblique during the Late Cretaceous. The forearc region may have been translated > 500 km dextrally from an original location nearer to Myanmar.Tethyan Himalayan sediments on the other side of the Yarlung-Tsangpo suture zone reveal similar older inheritance and although Cretaceous sediments formed 1000s of km and across at least one plate boundary from those in the Xigaze terrane they too contain an appreciable mid-Early Cretaceous (123 Ma) component. In this case it is attributed to volcanism associated with Gondwana breakup.Sedimentary overlap assemblages reveal interactions between colliding terranes. Paleocene Liuqu conglomerates contain a cryptic record of Late Jurassic and Cretaceous rock units that appear to have foundered during a Paleocene collision event prior the main India–Asia collision. Detrital zircons as young as 37 Ma from the upper Oligocene post-collisional Gangrinboche conglomerates indicate that subduction-related convergent margin magmatism continued through until at least Middle and probably Late Eocene along the southern margin of Eurasia (Lhasa terrane).Although the ages of detrital zircons in some units appear compatible with more than one potential source with care other geological relationships can be used to further constrain some linkages and eliminate others. The results document various ocean closure and collision events and when combined with other geological information this new dataset permits a more refined understanding of the time–space evolution of the Cenozoic India–Asia collision system.  相似文献   

18.
The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for in situ zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.  相似文献   

19.
Uranium-lead ages are reported for zircons from ultramafic bodies and metamorphic host rocks of the Western Series that outcrop at La Cabaña, in the southern section of the coastal accretionary complex of central Chile. Metasedimentary mica schists hosting the ultramafic bodies contain a main detrital zircon population of Devonian age (365–380 Ma) clustering around ~368 Ma, differing significantly from neighbouring areas where Devonian zircons are scarce. Zircons from the metasomatic reaction zones (albitites and chloritites), formed during the emplacement and alteration of the ultramafic bodies, are mainly Ordovician (~478 Ma) and lack Devonian zircons, resembling a typical detrital zircon pattern from other locations in the Western Series. Zircons from the chloritite reaction zone of the Lavanderos serpentinite, the easternmost ultramafic body in La Cabaña, are in textural equilibrium with metamorphic ilmenite. Some of these zircons yield an average age of 283.4 ± 7 Ma (n = 6) which is identical, within error, to a previously reported K-Ar fuchsite cooling age of 282 ± 6 Ma from the reaction zone. Most zircons extracted from chromitite boulders have euhedral oscillatory-zoned growth patterns with a similar range of ages than those reported for the Western Series (324–1090 Ma; n = 12), except for two zircons with cloudy appearance and high U/Th ratios which yielded an average age of 285.5 ± 7 Ma. The presence of Early Permian zircons (~280–290 Ma) in all studied rocks suggests remobilization of Zr, possibly triggered by metasomatic fluids released during the disequilibrium reaction associated with the tectonic emplacement of the ultramafic rocks into the metasedimentary rock. Simultaneously with the formation of metasomatic zircons, Palaeozoic and Mesoproterozoic zircons from the metasedimentary rocks were mechanically incorporated into the ultramafic rocks, thus providing a record of the timing of crustal emplacement of the ultramafic rocks into the accretionary complex.  相似文献   

20.
New zircon LA-ICP-MS U–Pb age, zircon Hf isotope, and whole-rock major and trace elemental data of the Late Cretaceous Ageledaban complex in the Karakorum Terrane (KKT), northwest Tibet, provide new constraints on the tectonic processes of the collision and thickening of the terrane between the Lhasa and Qiangtang terranes. The granitoids from the Ageledaban complex have a variable SiO2 content, from 62.83 to 73.35 wt.% and A/CNK<1.1 (except for YM61-2). They have rare earth element and trace element patterns that are enriched in light rare earth elements, Rb, Pb, Th, and U, and are depleted in Ba, P, Sr, Ti, and Nb, indicative of weakly peraluminous-metaluminous I-type affinity. Zircon U–Pb dating reveals that the Ageledaban complex was emplaced at ca. 80 Ma. Zircons from the monzogranite and monzonite samples with concordant 206Pb/238U ages about 80 Ma have a zircon εHf(t) of ?6.6 to ?1.1, corresponding to the Mesoproterozoic Hf crustal model ages (TDMC = 1.2–1.6 Ga); the remaining inherited zircons from the monzonite with concordant 206Pb/238U ages of about 108.1 Ma have εHf(t) values that range from ?8.3 to ?5.0, corresponding to the Mesoproterozoic Hf crustal model ages with an average of 1.6 Ga. These signatures indicate that the Ageledaban granitoids may have been derived from the partial melting of a mixed mantle-crust source. Together with the age and geochemical data in the literature, we propose that the collisional event in the KKT in northwestern Tibet would postdate the northern Lhasa–southern Qiangtang collision, which occurred first in the Amdo in the east and later in the Shiquanhe in central Tibet. Our results support the previous view that the collision of the Bangong–Nujiang suture zone (BNSZ) may be diachronous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号