首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We present results of the analysis of photometric and spectroscopic observations of the young stellar complexes in the late giant spiral galaxy UGC 11973. Photometric analysis in the $$UBVRI$$ bands have been carried out for the 13 largest complexes. For one of them, metallicity of the surrounding gas $$Z = 0.013 \pm 0.005$$ , the mass $$M = (4.6 \pm 1.6) \times {{10}^{6}}{\kern 1pt} {{M}_{ \odot }}$$ , and the age of the stellar complex $$t = (2.0 \pm 1.1) \times {{10}^{6}}$$ yr were evaluated, using spectroscopic data. It is shown that all complexes are massive ( $$M \geqslant 1.7 \times {{10}^{5}}{\kern 1pt} {{M}_{ \odot }}$$ ) stellar groups younger than $$3 \times {{10}^{8}}$$ yr.  相似文献   

2.
The averaging method is widely used in celestial mechanics, in which a mean orbit is introduced and slightly deviates from an osculating one, as long as disturbing forces are small. The difference $$\delta {\mathbf{r}}$$ in the celestial body positions in the mean and osculating orbits is a quasi-periodic function of time. Estimating the norm $$\left\| {\delta {\mathbf{r}}} \right\|$$ for deviation is interesting to note. Earlier, the exact expression of the mean-square norm for one problem of celestial mechanics was obtained: a zero-mass point moves under the gravitation of a central body and a small perturbing acceleration $${\mathbf{F}}$$. The vector $${\mathbf{F}}$$ is taken to be constant in a co-moving coordinate system with axes directed along the radius vector, the transversal, and the angular momentum vector. Here, we solved a similar problem, assuming the vector $${\mathbf{F}}$$ to be constant in the reference frame with axes directed along the tangent, the principal normal, and the angular momentum vector. It turned out that $${{\left\| {\delta {\mathbf{r}}} \right\|}^{2}}$$ is proportional to $${{a}^{6}}$$, where $$a$$ is the semi-major axis. The value $${{\left\| {\delta {\mathbf{r}}} \right\|}^{2}}{{a}^{{ - 6}}}$$ is the weighted sum of the component squares of $${\mathbf{F}}$$. The quadratic form coefficients depend only on the eccentricity and are represented by the Maclaurin series in even powers of $$e$$ that converge, at least for $$e < 1$$. The series coefficients are calculated up to $${{e}^{4}}$$ inclusive, so that the correction terms are of order $${{e}^{6}}$$.  相似文献   

3.
Geochemical potential field is defined as the scope within the earth’s space where a given component in a certain phase of a certain material system is acted upon by a diffusion force, depending on its spatial coordinatesX, Y andZ. The three coordinates follow the relations: $$NF_{ix} = - \frac{{\partial \mu }}{{\partial x}}, NF_{iy} = - \frac{{\partial \mu }}{{\partial y}}, NF_{iz} = - \frac{{\partial \mu }}{{\partial z}}$$ The characteristics of such a field can be summarized as: (1) The summation of geochemical potentials related to the coordinatesX, Y, Z, or pseudo-velocity head, pseudo-pressure head and pseudo-potential head of a certain component in the earth is a constant as given by $$\mu _x + \mu _y + \mu _z = c$$ or $$\mu _{x2} + \mu _{y2} + \mu _{z2} = \mu _{x1} + \mu _{y1} + \mu _{z1} $$ Derived from these relations is the principle of geochemical potential conservation. The following relations have the same physical significance: $$\mu _k + \mu _u + \mu _p = c$$ or $$\mu _{k2} + \mu _{u2} + \mu _{p2} = \mu _{k1} + \mu _{u1} + \mu _{p1} $$ (2) Geochemical potential field is a vector field quantified by geochemical field intensity which is defined as the diffusion force applied to one molecular volume (or one atomic volume) of a certain component moving from its higher concentration phase to lower concentration phase. The geochemical potential field intensity is given by $$\begin{gathered} E = - grad\mu \hfill \\ E = \frac{{RT}}{x}i + \frac{{RT}}{y}j + \frac{{RT}}{z}K \hfill \\ \end{gathered} $$ The present theory has been inferred to interpret the mechanism of formation of some tungsten ore deposits in China.  相似文献   

4.
The deformation behavior of calcite has been of longstanding interest. Through experiments on single crystals, deformation mechanisms were established such as mechanical twinning on in the positive sense and slip on and both in the negative sense. More recently it was observed that at higher temperatures slip in both senses becomes active and, based on slip line analysis, it was suggested that slip may occur. So far there had been no direct evidence for basal slip, which is the dominant system in dolomite. With new torsion experiments on calcite single crystals at 900 K and transmission electron microscopy, this study identifies slip unambiguously by direct imaging of dislocations and diffraction contrast analysis. Including this slip system in polycrystal plasticity simulations, enigmatic texture patterns observed in compression and torsion of calcite rocks at high temperature can now be explained, resolving a long-standing puzzle.  相似文献   

5.
Sudoite, muscovite, and quartz are authigenic minerals of the Cornberger Sandstein, the youngest eolian member of the uppermost Lower Permian. The sudoite is to a great extent similar to the material from the Kesselberg area (Black Forest, Germany).
$$\begin{gathered} n_z \approx n_z = 1.572 \pm 0.002 \hfill \\ \underline {{\text{ }}n_x = 1.568 \pm 0.003} \hfill \\ {\text{ }}\Theta \Delta = 0.004 \pm 0.003 \hfill \\ \end{gathered} $$  相似文献   

6.
Acta Geotechnica - The elastic stiffness of a fine sand at small to moderate strains ( $$\varepsilon \le 2 \times 10^{-4}$$ ) has been studied based on cyclic triaxial tests on cube-shaped samples...  相似文献   

7.
The linear thermal expansions of åkermanite (Ca2MgSi2O7) and hardystonite (Ca2ZnSi2O7) have been measured across the normal-incommensurate phase transition for both materials. Least-squares fitting of the high temperature (normal phase) data yields expressions linear in T for the coefficients of instantaneous linear thermal expansion, $$\alpha _1 = \frac{1}{l}\frac{{dl}}{{dT}}$$ for åkermanite: $$\begin{gathered} \alpha _{[100]} = 6.901(2) \times 10^{ - 6} + 1.834(2) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 2.856(1) \times 10^{ - 6} + 11.280(1) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ for hardystonite: $$\begin{gathered} \alpha _{[100]} = 15.562(5) \times 10^{ - 6} - 1.478(3) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 11.115(5) \times 10^{ - 6} + 11.326(3) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ Although there is considerable strain for temperatures within 10° C of the phase transition, suggestive of a high-order phase transition, there appears to be a finite ΔV of transition, and the phase transition is classed as “weakly first order”.  相似文献   

8.
The standard enthalpies of formation of FeS (troilite), FeS2 (pyrite), Co0.9342S, Co3S4 (linnaeite), Co9S8 (cobalt pentlandite), CoS2 (cattierite), CuS (covellite), and Cu2S (chalcocite) have been determined by high temperature direct reaction calorimetry at temperatures between 700 K and 1021 K. The following results are reported: $$\Delta {\rm H}_{f,FeS}^{tr} = - 102.59 \pm 0.20kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,FeS}^{py} = - 171.64 \pm 0.93kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_{0.934} S} = - 99.42 \pm 1.52kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_9 S_8 }^{ptl} = - 885.66 \pm 16.83kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_3 S_4 }^{In} = - 347.47 \pm 7.27kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,CoS_2 }^{ct} = - 150.94 \pm 4.85kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Cu_2 S}^{cc} = - 80.21 \pm 1.51kJ mol^{ - 1} ,$$ and $$\Delta {\rm H}_{f,CuS}^{cv} = - 53.14 \pm 2.28kJ mol^{ - 1} ,$$ The enthalpy of formation of CuFeS2 (chalcopyrite) from (CuS+FeS) and from (Cu+FeS2) was determined by solution calorimetry in a liquid Ni0.60S0.40 melt at 1100 K. The results of these measurements were combined with the standard enthalpies of formation of CuS, FeS, and FeS2, to calculate the standard enthalpy of formation of CuFeS2. We found \(\Delta {\rm H}_{f,CuFeS_2 }^{ccp} = - 194.93 \pm 4.84kJ mol^{ - 1}\) . Our results are compared with earlier data given in the literature; generally the agreement is good and our values agree with previous estimates within the uncertainties present in both.  相似文献   

9.
The enthalpy of formation of andradite (Ca3Fe2Si3O12) has been estimated as-5,769.700 (±5) kJ/mol from a consideration of the calorimetric data on entropy (316.4 J/mol K) and of the experimental phaseequilibrium data on the reactions: 1 $$\begin{gathered} 9/2 CaFeSi_2 O_6 + O_2 = 3/2 Ca_3 Fe_2 Si_3 O_{12} + 1/2 Fe_3 O_4 + 9/2 SiO_2 (a) \hfill \\ Hedenbergite andradite magnetite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 4 CaFeSi_2 O_6 + 2 CaSiO_3 + O_2 = 2 Ca_3 Fe_2 Si_3 O_{12} + 4 SiO_2 (b) \hfill \\ Hedenbergite wollastonite andradite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 18 CaSiO_3 + 4 Fe_3 O_4 + O_2 = 6Ca_3 Fe_2 Si_3 O_{12} (c) \hfill \\ Wollastonite magnetite andradite \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} Ca_3 Fe_2 Si_3 O_{12} = 3 CaSiO_3 + Fe_2 O_3 . (d) \hfill \\ Andradite pseudowollastonite hematite \hfill \\ \end{gathered} $$ and $$log f_{O_2 } = E + A + B/T + D(P - 1)/T + C log f_{O_2 } .$$ Oxygen-barometric scales are presented as follows: $$\begin{gathered} E = 12.51; D = 0.078; \hfill \\ A = 3 log X_{Ad} - 4.5 log X_{Hd} ; C = 0; \hfill \\ B = - 27,576 - 1,007(1 - X_{Ad} )^2 - 1,476(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite (Ad)-hedenbergite (Hd)-magnetite-quartz: $$\begin{gathered} E = 13.98; D = 0.0081; \hfill \\ A = 4 log(X_{Ad} / X_{Hd} ); C = 0; \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-quartz: 1 $$\begin{gathered} E = 13.98;{\text{ }}D = 0.0081; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 0;}} \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-calcitequartz: 1 $$\begin{gathered} E = - 1.69;{\text{ }}D = - 0.199; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 2;}} \hfill \\ B = - 20,441 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-calcite: 1 $$\begin{gathered} E = - 17.36;{\text{ }}D = - 0.403; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 4;}} \hfill \\ B = - 11,720 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 \hfill \\ \end{gathered} $$ The oxygen fugacity of formation of those skarns where andradite and hedenbergite assemblage is typical can be calculated by using the above equations. The oxygen fugacity of formation of this kind of skarn ranges between carbon dioxide/graphite and hematite/magnetite buffers. It increases from the inside zones to the outside zones, and appears to decrease with the ore-types in the order Cu, Pb?Zn, Fe, Mo, W(Sn) ore deposits.  相似文献   

10.
Astronomy Reports - We present the detection and characterization of the ultrahot Jupiter WASP-121b ( $${{R}_{p}} \simeq 1.865{\kern 1pt} {{R}_{J}}$$ , $${{M}_{p}} \simeq 1.184{\kern 1pt}...  相似文献   

11.
Oxygen diffusion in albite has been determined by the integrating (bulk 18O) method between 750° and 450° C, for a P H2O of 2 kb. The original material has a low dislocation density (<106 cm?2), and its lattice diffusion coefficient (D 1), given below, agrees well with previous determinations. A sample was deformed at high temperature and pressure to produce a uniform dislocation density of 5 × 109 cm?2. The diffusion coefficient (D a) for this deformed material, given below, is about 0.5 and 0.7 orders of magnitude larger than D 1 at 700° and 450° C, respectively. This enhancement is believed due to faster diffusion along the cores of dislocations. Assuming a dislocation core radius of 4 Å, the calculated pipe diffusion coefficient (D p), given below, is about 5 orders of magnitude larger than D 1. These results suggest that volume diffusion at metamorphic conditions may be only slightly enhanced by the presence of dislocations. $$\begin{gathered} D_1 = 9.8 \pm 6.9 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 33.4 \pm 0.6(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_a = 7.6 \pm 4.0 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 30.9 \pm 1.1(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_p \approx 1.2 \times 10^{ - 1} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 29.8(kcal/mole)/RT]. \hfill \\ \end{gathered} $$   相似文献   

12.
The thermodynamic stability constants for the hydrolysis and formation of mercury (Hg2+) chloride complexes
have been used to calculate the activity coefficients for Hg(OH) n (2–n)+ and HgCl n (2–n)+ complexes using the Pitzer specific interaction model. These values have been used to determine the Pitzer parameters for the hydroxide and chloro complexes and C ML). The values of and have been determined for the neutral complexes (Hg(OH)2 and HgCl2). The resultant parameters yield calculated values for the measured values of log to  ±0.01 from I  =  0.1 to 3 m at 25°C. Since the activity coefficients of and are in reasonable agreement with the values for Pb(II), we have estimated the effect of temperature on the chloride constants for Hg(II) from 0 to 300°C and I = 0–6 m using the Pitzer parameters for complexes. The resulting parameters can be used to examine the speciation of Hg(II) with Cl in natural waters over a wide range of conditions.  相似文献   

13.
We present the first high accuracy UBVRI(RI)c CCD light curves of the newly discovered eclipsing system PS UMa = GSC 4375 1733 ($$P = 9_{·}^{d}27$$, $$V = 12_{·}^{m}42$$). The photometric solutions are found, the physical parameters of the components are derived. The eccentricity of the orbit was found to be negligible e = 0.074, which made it difficult to measure the rate of the apsidal rotation. High accuracy of our observations allowed us to find the reliable parameters of the system. Components (Sp = F7 + G1) have advanced significantly in their evolution, the age of the system is 2.4 billion years. The mass and the radius of G1 component is larger and it is ahead of the F7 component in its evolution. The model of the system best suits the theory in the absence of the overshooting in the core. Obtained from our observations photometrical parallax π = 0$$_{.}^{\prime\prime }$$00102(2) coincides with GAIA DR2 value $$\pi =0_{·}^{\prime\prime }00106(3)$$ within their errors. The new EW type variable with period $$ \approx {\kern 1pt} 0_{·}^{d}40$$ was found in the field of PS UMa.  相似文献   

14.
The work on the kinematical parameters and spatial shape structure have been performed with Gaia DR2 astrometry data of the new recently southern discovered open clusters UFMG 1, UFMG 2, and UFMG 3 in the vicinity (∼1.3 degrees radius) of the rarely studied NGC 5999. The apexes positions with AD‑diagram method are computed for about 107, 168, 98, and 154 members of these star clusters, respectively. Our calculated values of apex coordinates are (Ao, Do) = (102$$_{.}^{^\circ }$$40 ± 1.02 and ‒4$$_{.}^{^\circ }$$60 ± 0.47; NGC 5999), (96$$_{.}^{^\circ }$$69 ± 1.10 and ‒0$$_{.}^{^\circ }$$58 ± 0.045; UFMG 1), (97$$_{.}^{^\circ }$$47 ± 1.09 and 1$$_{.}^{^\circ }$$56 ± 0.051; UFMG 2), and (98$$_{.}^{^\circ }$$65 ± 1.12 and ‒0$$_{.}^{^\circ }$$26 ± 0.060; UFMG 3). Velocity Ellipsoid Parameters (VEPs) for those clusters are also computed, i.e., space velocities $$\left( {\bar {U},\bar {V},\bar {U}} \right)$$ due to Galactic coordinates, dispersion velocities (σ1, σ2, σ3) due to matrix elements μij, projected distances (X, Y, Z) on the disk plane, and the Solar elements (S⊙, lA, bA). According to an approximation of spatial and kinematical shape, UFMGs and NGC 5999 seem to have a spatial difference in their spatial locations, but they appear to have formed in the same region of the Galactic disk. The total cumulative mass MC; including the total number of main-sequence NMS and non-main-sequence Nnon-MS stars of these clusters also evaluated here with a second-order polynomial of mass-luminosity relation in order to get clusters tidal radii (pc). Finally, we concluded that NGC 5999, UFMG 1, and UFMG 2 are dynamically relaxed (i.e., τ ≫ 1), and the fourth one in non-relaxed.  相似文献   

15.
Terashkevich  V. A.  Pazyuk  E. A.  Stolyarov  A. V.  Wiebe  D. S. 《Astronomy Reports》2021,65(12):1211-1214
Astronomy Reports - The sensitivity coefficients of the argonium ground $${{X}^{1}}{{\Sigma }^{ + }}$$ -state rotational lines with respect to the reduced molecular mass $$\mu $$ are evaluated...  相似文献   

16.
The equilibrium constants for the reaction (2) Rhodochrosite + Quartz=Pyroxmangite+CO2 obtained are:logK(2)(bars)= $$\begin{gathered}{\text{log}}f_{co_2 } = - \frac{{(9862 \pm 102)}}{T} \hfill \\+ (15.887 \pm 0.220) + (0.1037 \pm 0.0020)\frac{{P - 1}}{T} \hfill \\\end{gathered} $$ and for the reaction (3) Rhodochrosite+Pyroxmangite=Tephroite+CO2: logK(3)(bars)= $$\begin{gathered}{\text{log}}f_{co_2 } = - \frac{{(6782 \pm 205)}}{T} \hfill \\+ (11.296 \pm 0.304) + (0.0835 \pm 0.0030)\frac{{P - 1}}{T} \hfill \\\end{gathered} $$ The present data lie within reasonable limits of error of the values calculated from previous experimental results at P tot = 2000 bars.  相似文献   

17.
Sannikova  T. N. 《Astronomy Reports》2021,65(12):1265-1277
Astronomy Reports - A problem is considered in which a zero-mass point moves under the attraction of the central body&nbsp; $$\mathcal{S}$$ and perturbing acceleration $${\mathbf{P}}{\kern 1pt}...  相似文献   

18.
Astronomy Reports - The motion of a point with zero mass under the action of attraction to the central body $$\mathcal{S}$$ and perturbing acceleration $${\mathbf{P}}{\kern 1pt} ' =...  相似文献   

19.
New data concerning glaucophane are presented. New high temperature drop calorimetry data from 400 to 800 K are used to constrain the heat capacity at high temperature. Unpublished low temperature calorimetric data are used to estimate entropy up to 900 K. These data, corrected for composition, are fitted for C p and S to the polynomial expressions (J · mol?1 · K?2) for T> 298.15 K: $$\begin{gathered} C_p = 11.4209 * 10^2 - 40.3212 * 10^2 /T^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} - 41.00068 * 10^6 /T^2 \hfill \\ + 52.1113 * 10^8 /T^3 \hfill \\ \end{gathered} $$ $$\begin{gathered} S = 539 + 11.4209 * 10^2 * \left( {\ln T - \ln 298.15} \right) - 80.6424 * 10^2 \hfill \\ * \left( {T^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} - 1/\left( {298.15} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right) + 20.50034 * 10^6 \hfill \\ * \left( {T^{ - 2} - 1/\left( {298.15} \right)^2 } \right) - 17.3704 * 10^8 * \left( {T^{ - 3} - \left( {1/298.15} \right)^3 } \right) \hfill \\ \end{gathered} $$ IR and Raman spectra from 50 to 3600 cm?1 obtained on glaucophane crystals close to the end member composition are also presented. These spectroscopic data are used with other data (thermal expansion, acoustic velocities etc.) in vibrational modelling. This last method provides an independent way for the determination of the thermodynamic properties (Cp and entropy). The agreement between measured and calculated properties is excellent (less than 2% difference between 100 and 1000 K). It is therefore expected that vibrational modelling could be applied to other amphiboles for which spectroscopic data are available. Finally, the enthalpy of formation of glaucophane is calculated.  相似文献   

20.
Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$ The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent orthopyroxene and spinel. An ideal two-site mixing model for pyroxene and Sack's (1982) expressions for spinel activities provide, with the present experimental calibration, a geothermometer which yields temperatures of 800° C to 1,350° C for various alpine peridotites and 850° C to 1,130° C for various volcanic inclusions of upper mantle origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号