首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
一个太阳耀斑约含数千个微耀斑[1],每个微耀斑以热的,低频波和加速粒子的形式释放能量。耀斑期间大部分能量的释放是通过电子加速转移的结果,然而电子加速是在耀斑前相开始,并在整个耀斑持续期间继续保持。在耀斑发展的不同相期间伴有各种各样的射电辐射现象(及其它波段共生现象),多波段射电观测和比较可以给出有关电子加速过程和耀斑自身发展的重要信息,尤其可检测加速开始的时间和频率部位(目前仍为太阳物理的前沿)。微耀斑能量的瞬时释放可能是引起不同类型快速精细结构的原因,射电毫秒级尖峰辐射是起因于连续能量释放的证据,其辐射源位于或靠近能量释放区[2],公认射电辐射的快速结构是日冕电子束的特征信号[3,4],所以今后使用高时间和高频率分辨率的宽带频谱仪同时观测可详细地探测加速过程,从而对预耀斑的加热和初始能量释放,耀斑的逐步建立和演化都具有重要意义。本文介绍几个典型事件,包括射电尖峰脉冲辐射,类尖峰辐射和短时标漂移结构  相似文献   

2.
一太阳耀斑的约含数千个微耀斑,每个微耀斑以热的,低频波和加速粒子的形成释放能量。耀斑期间大部分能量的释放是通过电子加速转移的 结果,然而电子加速是在耀斑前相开始,并在整个耀斑持续期间继续保持。本文介绍几个典型事件,包括射电尖峰脉冲辐射,类尖峰辐射和短时标漂移结构。  相似文献   

3.
本文从粒子分布函数所满足的带有规则电场的准线性方程出发,得到了包含有规则电场与湍动起伏场相互耦合作用在内的等效动量空间扩散系数,提出了太阳质子耀斑中性片中的规则电场与湍动起伏场的联合加速机制。根据太阳质子耀斑的物理条件,计算表明荷电粒子在中性片中可以被有效地加速,能量可以达到~20MeV,甚至~1GeV。本文证明了离子声湍动起伏场与规则电场的联合加速机制有效地使质子和其它重离子注入到Langmuir湍动加速区中去;并且表明,在Langmuir湍动起伏场与规则电场联合加速的情形下,可以得到与观测事实符合得较好的高能质子的谱以及高能电子的幂律分布的谱。  相似文献   

4.
本文首先介绍了热力学自由能上限的普遍公式及其推导思想,然后应用于非热电子束的具体形式,从而估计太阳射电活动中的毫秒级尖峰辐射的“饱和”能量;在此基础上,进一步为饱和时间问题作一般性的讨论;最后,在把尖峰“饱和”的几种机制进行了比较之后提出:由于尖峰能量远未达到非线性饱和的水平,因此,由某种外部因素(例如加速机制等)所导致的高能电子束的非均匀性可能是一种较为合理的模型。  相似文献   

5.
本文简要回顾了SMM/GRS对耀斑伽玛射线的观测,并就耀斑伽玛射线的产生,伽玛射线发射的时间结构及解释,高能粒子的能谱及作用模型,高能辐射的方向性及粒子的加速机制,加速粒子的元素丰富度以及电子占优事件的性质等方面,简述了目前的研究状况。  相似文献   

6.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   

7.
通过1991年6月6日共生太阳白光耀斑(WLF)的射电运动IV型爆发及其伴随现象(包括耀斑后环、爆发衰减相的射电脉动、多波段射电辐射和太阳物质抛射等)观测资料的分析,定性地探讨了WLF的起源、加热机制和发射地点的问题.假设了WLF和射电运动IV型射电爆发可能有共同起源的低日冕电子加速区,讨论了WLF的能量传输可能是通过二步加速过程,即来自低日冕的非热电子沉降能量于色球层,产生色球层的压缩波或向下的辐射场进而使上光球层温度增加导致WLF此外,提出WLF可能会伴有耀斑后环和射电精细结构的对应物.  相似文献   

8.
利用国家天文台(北京和昆明)的射电频谱仪(频段为0.65~7.6 GHz)和相关的NoRH/17GHz射电以及TRACE/171 EUV和Yohkoh/SXT的观测资料,分析了2001/04/10和10/19的2个共生精细时间结构的稀有事件,这2个事件的射电爆发时间轮廓和观测特征相似,通过这2个事件的微波(17GHz)偏振观测资料的比较,发现这2个射电爆发均由包含多重(4极)磁结构的复杂活动区引起,特别指出这2个耀斑最后都导致了耀斑后相的分米波射电爆发(第二次触发耀斑),这可能是后环引起的射电爆发。它们都分别对应于双极磁位形,表明这两次触发耀斑是由相似的耀斑模型产生。2个分米波爆发可能是相似(homologous)耀斑的射电表现,可以推测这两次耀斑的驱动器可能皆是磁流浮现或对消(因为源区有新的单或双极出现或消失),而它们的触发器皆是由双极反向Y型位形(具有一个双极拱的单磁流系统)的磁重联,耀斑后环的演化是导致耀斑后相分米波射电爆发的必要条件。我们认为,这双带耀斑对应的宽带射电爆发辐射机制是回旋同步加速辐射过程,而耀斑后相的窄带分米波爆发的辐射机制是等离子体辐射过程。  相似文献   

9.
太阳耀斑伽玛射线能谱是加速粒子与太阳大气介质原子碰撞的结果,它是研究太阳耀斑中加速粒子和高能电子最为直接的手段.通过分析伽玛射线能谱,可以获得耀斑过程中加速粒子的成分、能谱、角分布及太阳大气元素丰度等重要信息.TALYS程序是一套模拟核反应的软件,对核反应过程中的所有信息均能完整地描述.利用TALYS计算得到了完整的太阳耀斑伽玛射线的核反应截面数据,开发了一套新的耀斑伽玛射线谱计算程序.详细介绍了耀斑伽玛射线计算的理论模型,并简单探讨了耀斑伽玛射线的特性,为未来的耀斑伽玛射线能谱分析奠定了理论基础.  相似文献   

10.
自从快速连续采样在太阳射电观测中实现以来,太阳射电爆发资料的研究价值大大提高。如太阳射电尖峰辐射(spike)的存在、用付里叶变换的方法进行准周期振荡的研究等目前在太阳物理研究中存在着争论的问题,可用观测事实加以验证。 1989年5月3日我们取得了一组与X2/3B耀斑共生的spikes及同年8月17日与环珥、HXR、SID对应的射电分米波爆发现象,其射电爆发寿命均大于10分钟。前者的形  相似文献   

11.
We present two alternative interpretations of the sudden X-ray brightenings observed in loops that interconnect active regions. A fast tearing mode may be excited in those newly formed interconnecting loops within which sufficient magnetic free energy is stored to drive the mode. Alternatively anomalous Joule heating driven by an inductive electric field parallel to the magnetic field varying on a time scale of order of a minute may cause the brightenings. We argue that it is plausible that the fast tearing mode may be the cause of brightenings in the young newly formed interconnecting loops, whereas the anomalous Joule heating might occur in old loop connections when an external disturbance propagates through them.  相似文献   

12.
D. S. Spicer 《Solar physics》1981,71(1):115-124
We develop a simple, but physically consistent, model of heating and particle acceleration by fast tearing modes, for modeling compact loop flares or erupting prominences. It is shown that there is a slow preheating, over many e -foldings of the instability, after which a rapid heating takes place in approximately one e-folding. The role of anomalous resistivity excited by the induced electric field during tearing is discussed, and how both thermal conduction and plasma expansion may play a role in cooling. Estimates for the total number of thermal and non-thermal electrons generated by one fast tearing mode are given, and it is argued that collisional tearing modes give rise to a primarily thermal plasma.  相似文献   

13.
We review recent progress on our understanding of radio emission from solar flares and coronal mass ejections (CMEs) with emphasis on those aspects of the subject that help us address questions about energy release and its properties, the configuration of flare?–?CME source regions, coronal shocks, particle acceleration and transport, and the origin of solar energetic particle (SEP) events. Radio emission from electron beams can provide information about the electron acceleration process, the location of injection of electrons in the corona, and the properties of the ambient coronal structures. Mildly relativistic electrons gyrating in the magnetic fields of flaring loops produce radio emission via the gyrosynchrotron mechanism, which provides constraints on the magnetic field and the properties of energetic electrons. CME detection at radio wavelengths tracks the eruption from its early phase and reveals the participation of a multitude of loops of widely differing scale. Both flares and CMEs can ignite shock waves and radio observations offer the most robust tool to study them. The incorporation of radio data into the study of SEP events reveals that a clear-cut distinction between flare-related and CME-related SEP events is difficult to establish.  相似文献   

14.
We investigate the nonlinear evolution of resistive tearing mode in a current sheet with a sheared flow in a long, thin cylinder. The results show that a hyperbolic secant (sech) flow field will lead to instability of the resistive tearing mode, formation of magnetic islands and rapid release of magnetic energy. The coupling between sheared flow and the tearing mode and interaction between suprathermal instabilities change the degree of shear in the magnetic field (the electric current gradient) and drive the development of the instability. This process may be one of the mechanisms of solar flares.  相似文献   

15.
This review covers the most recent experimental results and theoretical research on zebra patterns(ZPs)in solar radio bursts.The basic attention is given to events with new peculiar elements of zebra patterns received over the last few years.All new properties are considered in light of both what was known earlier and new theoretical models.Large-scale ZPs consisting of small-scale fiber bursts could be explained by simultaneous inclusion of two mechanisms when whistler waves"highlight"the levels of double plasma resonance(DPR).A unique fine structure was observed in the event on 2006 December 13: spikes in absorption formed dark ZP stripes against the absorptive type Ⅲ-like bursts.The spikes in absorption can appear in accordance with well known mechanisms of absorptive bursts.The additional injection of fast particles filled the loss-cone(breaking the loss-cone distribution),and the generation of the continuum was quenched at these moments.The maximum absorptive effect occurs at the DPR levels.The parameters of millisecond spikes are determined by small dimensions of the particle beams and local scale heights in the radio source.Thus,the DPR model helps to understand several aspects of unusual elements of ZPs.However,the simultaneous existence of several tens of the DPR levels in the corona is impossible for any realistic profile of the plasma density and magnetic field.Three new theories of ZPs are examined.The formation of eigenmodes of transparency and opacity during the propagation of radio waves through regular coronal inhomogeneities is the most natural and promising mechanism.Two other models(nonlinear periodic space-charge waves and scattering of fast protons on ion-sound harmonics)could happen in large radio bursts.  相似文献   

16.
Radio observation is one of important methods in solar physics and space science. Sometimes, it is almost the sole approach to observe the physical processes such as the acceleration, emission, and propagation of non-thermal energetic particles, etc. So far, more than 100 solar radio telescopes have been built in the world, including solar radiometers, dynamic spectrometers, and radioheliographs. Some of them have been closed after the fulfillment of their primary scientific objectives, or for their malfunctions, and thus replaced by other advanced instruments. At the same time, based on some new technologies and scientific ideas, various kinds of new and much more complicated solar radio telescopes are being constructed by solar radio astronomers and space scientists, such as the American E-OVSA and the solar radio observing system under the framework of Chinese Meridian Project II, etc. When we plan to develop a new solar radio telescope, it is crucial to design the most suitable technical parameters, e.g., the observing frequency range and bandwidth, temporal resolution, frequency resolution, spatial resolution, polarization degree, and dynamic range. Then, how do we select a rational set of these parameters? The long-term observation and study revealed that a large strong solar radio burst is frequently composed of a series of small bursts with different time scales. Among them, the radio spike burst is the smallest one with the shortest lifetime, the narrowest bandwidth, and the smallest source region. Solar radio spikes are considered to be related to a single magnetic energy release process, and can be regarded as an elementary burst in solar flares. It is a basic requirement for the new solar radio telescope to observe and discriminate these solar radio spike bursts, even though the temporal and spatial scales of radio spike bursts actually vary with the observing frequency. This paper presents the scaling laws of the lifetime and bandwidth of solar radio spike bursts with respect to the observing frequency, which provide some constraints for the new solar radio telescopes, and help us to select the rational telescope parameters. Besides, we propose a spectrum-image combination mode as the best observation mode for the next-generation solar radio telescopes with high temporal, spectral, and spatial resolutions, which may have an important significance for revealing the physical essence of the various non-thermal processes in violent solar eruptions.  相似文献   

17.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

18.
Solar radio spikes are one of the most intriguing spectral types of radio bursts. Their very short lifetimes, small source size and super-high brightness temperature indicate that they should be involved in some strong energy release, particle acceleration and coherent emission processes closely related to solar flares. In particular, for the microwave spike bursts, their source regions are much close to the related flaring source region which may provide the fundamental information of the flaring process. In this work,we identify more than 600 millisecond microwave spikes which recorded by the Solar Broadband Radio Spectrometer in Huairou(SBRS/Huairou) during an X3.4 solar flare on 2006 December 13 and present a statistical analysis about their parametric evolution characteristic. We find that the spikes have nearly the same probability of positive and negative frequency drifting rates not only in the flare rising phase, but also in the peak and decay phases. So we suppose that the microwave spike bursts should be generated by shockaccelerated energetic electrons, just like the terminational shock(TS) wave produced by the reconnection outflows near the loop top. The spike bursts occurred around the peak phase have the highest central frequency and obviously weak emission intensity, which imply that their source region should have the lowest position with higher plasma density due to the weakened magnetic reconnection and the relaxation of TS during the peak phase. The right-handed polarization of the most spike bursts may be due to the TS lying on the top region of some very asymmetrical flare loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号