首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The Cihai iron skarn deposit is located in the southern part of the eastern Tianshan, Xinjiang, northwestern China. The major iron orebodies are banded and nearly parallel to each other. The iron ores are hosted in an early diabase dike and in skarn. Post-ore diabase dikes cut the iron ores and their hosting diabase. Hydrothermal activity can be divided into four stages based on geological and petrographic observations: initial K–Na alteration (stage I), skarn-minor magnetite event (II), retrograde skarn-magnetite main ore event (III), and quartz–calcite–sulfide veining (IV). Zircon U–Pb dating yields ages of 286.5 ± 1.8 Ma for early diabase and 275.8 ± 2.2 Ma for post-ore diabase dikes. Amphibole separated from massive magnetite ore gives a 40Ar–39Ar plateau age of 281.9 ± 2.2 Ma and is the time of ore formation. Formation of the Cihai iron deposit is closely related to post-collisional magmatism and associated Cu–Ni–Au polymetallic mineralization in the eastern Tianshan.  相似文献   

2.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   

3.
Magnesian skarn-type tin deposits are relatively rare in the world. The Hehuaping cassiterite-sulfide deposit in southern China, having a total reserve of approximately 130,000 t of tin, 50,000 t of lead and 10,000 t of zinc, is identified as such type. The deposit is related to the Late Jurassic (157 Ma) Hehuaping medium- to coarse-grained biotite granite that intruded the Middle Devonian Qiziqiao dolomite Formation and the Tiaomajian sandstone Formation. Four paragenetic stages of skarn and ore formation have been recognized: I. prograde stage, II. retrograde stage, III. cassiterite-sulfide stage and IV. carbonate stage. Alteration zoning between fresh granite and unaltered country rocks can be identified. The skarn are typified by Mg-mineral assemblages of forsterite, spinel, diopside, tremolite, serpentine, talc, and phlogopite. The geochemistry of various skarn minerals shows a gradually decrease of Mg end member and, correspondingly, an increase of Fe- and especially Mn end members along the process of skarn alteration.Tin mineralization developed during the late retrograde stage resulted in cassiterite–magnetite-diopside skarn. However, the deposition of cassiterite occurred predominantly as cassiterite-sulfide veins along fractures and interlayer fracture zones during stage III. The petrogeochemistry of Hehuaping granite, as well as S- and Pb isotopic analyses suggest that the ore-forming elements have a magmatic source originated from the upper crust. The HO isotopic and fluid-inclusion analyses indicate that high-temperature ore-forming fluids in early anhydrous skarn stage (stage I) are also magmatic origin. In comparison, the retrograde fluids are characterized by relatively low salinity (2 to 10 wt.% NaCl equiv) and low temperature (220 to 300 °C), suggesting a mixed origin of meteoric waters with magmatic fluids. The major ore-forming stage III fluids are characterized by lower temperature (170 to 240 °C) and salinity (1 to 6 wt.% NaCl equiv), indicating fluid mixing could be an efficient tin-mineralizing mechanism. Meteoric waters are dominant in stage IV, resulting in a further lowering of temperature (130 to 200 °C) and salinity (0.4 to 1 wt.% NaCl equiv).  相似文献   

4.
The North China craton hosts numerous iron skarn deposits containing more than 2600 Mt of iron ores, mostly with an average grade of >45 wt% Fe, which have been among the most important source of high-grade iron ores for the last three decades in China. These deposits typically form clusters and can be roughly divided into the western and eastern belts, which are located in the middle of Trans-North China orogen and to the west of the Tan-Lu fault zone in the eastern part of North China craton, respectively. The western belt mainly consists of the southern Taihang district, as well as the Linfen and Taiyuan ore fields, whereas the eastern belt comprises the Luxi and Xu-Huai districts. The Zhangjiawa deposit in the Luxi district has proven reserves of 290 Mt at an average of 46% Fe (up to >65%). The iron mineralization occurs mainly along contact zones between the Kuangshan dioritic intrusion and middle Ordovician marine carbonate rocks that host numerous evaporite intercalations. Titanite grains from the mineralized skarn are closely intergrown with magnetite and retrograde skarn minerals including chlorite, phlogopite and minor epidote, indicating a hydrothermal origin. The titanite grains have extremely low REE contents and low Th/U ratios, consistent with their precipitation directly from hydrothermal fluids responsible for the iron mineralization. Ten hydrothermal titanite grains yield a weighted mean 206Pb/238U age of 131.0 ± 3.9 Ma (MSWD = 0.1, 1σ), which is in excellent agreement with a zircon U-Pb age (130 ± 1 Ma) of the ore-related diorite. This age consistency confirms that the iron skarn mineralization is temporally and likely genetically related to the Kuangshan intrusion. Results from this study, when combined with existing isotopic age data, suggest that iron skarn mineralization and associated magmatism throughout both the eastern and western belts took place coevally between 135 and 125 Ma, with a peak at ca. 130 Ma. As such, those deposits may represent the world's only major Phanerozoic iron skarn concentration hosted in Precambrian cratons. The magmatism and associated iron skarn mineralization coincide temporally with the culmination of lithospheric thinning and destruction of the North China craton, implying a causal link between the two.  相似文献   

5.
The Hetaoping zinc–lead deposit is located in the northern Baoshan block, Sanjiang region, SW China. The ore deposit comprises massive orebodies in the lower part and lenticular and vein-like orebodies in the upper part, both of which are hosted in the marbleized Upper Cambrian limestone and slate of the Hetaoping Formation. Three mineralization stages of Hetaoping skarn system have been recognized based on petrographic observation, which are pre-ore stage (pyroxene–garnet–actinolite–epidote–magnetite), syn-ore stage (sulfides–quartz–calcite–fluorite), and post-ore stage (calcite–quartz–chlorite). Andradite and hedenbergite are dominant in pre-ore garnet and pyroxene, respectively. Ore minerals consist of mainly pyrite, sphalerite, chalcopyrite, bornite and galena. Three types of fluid inclusions have been identified in Hetaoping, including primary two-phase (A type), primary three-phase (B type) and secondary two-phase (C type) inclusions. Based on fluid inclusion microthermometric study, the fluids forming the Hetaoping skarn minerals and sulfides evolved from high-moderate temperature (255–498 °C) and low-moderate salinity (5.0–18.0 wt.% NaCl equiv) in pre-ore stage, through moderate-low temperature (152–325 °C) and low salinity (0.4–14.2 wt.% NaCl equiv) in syn-ore stage, to low temperature (109–205 °C) and low salinity (0.9–10.0 wt.% NaCl equiv) in post-ore stage. The sulfide δ34S values range from 3.7 to 7.1‰ (mean = 5.2‰, n = 29), indicative of a dominantly magmatic sulfur origin. Silicate and carbonate oxygen isotopes give calculated δ18OH2O ranges of 3.9–11.1‰ in prograde stage, − 0.9 to 4.6‰ in early retrograde stage, and − 1.3 to 2.9‰ in late retrograde stage (syn-ore stage), The oxygen isotope data reveal that the prograde fluid in Hetaoping could be primarily magmatic, which has been mixed significantly with meteoric water in the late retrograde stage. Such a fluid mixing process is considered to be a key factor controlling ore precipitation.  相似文献   

6.
The Zhibula Cu skarn deposit contains 0.32 Mt. Cu metal with an average grade of 1.64% and is located in the Gangdese porphyry copper belt in southern Tibet. The deposit is a typical metasomatic skarn that is related to the interaction of magmatic–hydrothermal fluids and calcareous host rock. Stratiform skarn orebodies occur at the contact between tuff and marble in the Lower Jurassic Yeba Formation. Alteration zones generally grade from a fresh tuff to a garnet-bearing tuff, a garnet pyroxene skarn, and finally to a wollastonite marble. Minor endoskarn alteration zonations are also observed in the causative intrusion, which grade from a fresh granodiorite to a weakly chlorite-altered granodiorite, a green diopside-bearing granodiorite, and to a dark red-brown garnet-bearing granodiorite. Prograde minerals, which were identified by electron probe microanalysis include andradite–grossularite of various colors (e.g., red, green, and yellow) and green diopside. Retrograde metamorphic minerals overprint the prograde skarn, and are mainly composed of epidote, quartz, and chlorite. The ore minerals consist of chalcopyrite and bornite, followed by magnetite, molybdenite, pyrite, pyrrhotite, galena, and sphalerite. Three types of fluid inclusions are recognized in the Zhibula deposit, including liquid-rich two-phase inclusions (type L), vapor-rich two-phase inclusions (type V), and daughter mineral-bearing three-phase inclusions (type S). As the skarn formation evolved from prograde (stage I) to early retrograde (stage II) and later retrograde (stage III), the ore-forming fluids correspondingly evolved from high temperature (405–667 °C), high salinity (up to 44.0 wt.% NaCl equiv.), and high pressure (500–600 bar) to low-moderate temperature (194–420 °C), moderate-high salinity (10.1–18.3 and 30.0–44.2 wt.% NaCl equiv.), and low-moderate pressure (250–350 bar). Isotopic data of δ34S (− 0.1‰ to − 6.8‰, estimated δ34Sfluids =  0.7‰), δDH2O (− 91‰ to − 159‰), and δ18OH2O (1.5‰ to 9.2‰) suggest that the ore-forming fluid and material came from magmatic–hydrothermal fluids that were associated with Miocene Zhibula intrusions. Fluid immiscibility likely occurred at the stage I and stage II during the formation of the skarn and mineralization. Fluid boiling occurred during the stage III, which is the most important Cu deposition mechanism for the Zhibula deposit.  相似文献   

7.
The Cangyuan Pb-Zn-Ag polymetallic deposit is located in the Baoshan Block, southern Sanjiang Orogen. The orebodies are hosted in low-grade metamorphic rocks and skarn in contact with Cenozoic granitic rocks. Studies on fluid inclusions (FIs) of the deposit indicate that the ore-forming fluids are CO2-bearing, NaCl-H2O. The initial fluids evolved from high temperatures (462–498 °C) and high salinities (54.5–58.4 wt% NaCl equiv) during the skarn stage into mesothermal (260–397 °C) and low salinities (1.2–9.5 wt% NaCl equiv) during the sulfide stage. The oxygen and hydrogen isotopic compositions (δ18OH2O: 2.7–8.8‰; δD: −82 to −120‰) suggest that the ore-forming fluids are mixture of magmatic fluids and meteoric water. Sulfur isotopic compositions of the sulfides yield δ34S values of −2.3 to 3.2‰; lead isotopic compositions of ore sulfides are similar to those of granitic rocks, indicating that the sulfur and ore-metals are derived from the granitic magma. We propose that the Cangyuan Pb-Zn-Ag deposit formed from magmatic hydrothermal fluids. These Cenozoic deposits situated in the west of Lanping-Changdu Basin share many similarities with the Cangyuan in isotopic compositions, including the Laochang, Lanuoma and Jinman deposits. This reveals that the Cenozoic granites could have contributed to Pb-Zn-Cu mineralization in the Sanjiang region despite the abundance of Cenozoic Pb-Zn deposits in the region, such as the Jingding Pb-Zn deposit, that is thought to be of basin brine origin.  相似文献   

8.
Diabase dykes in Cihai, Beishan region, NW China are spatially and temporally associated with ‘Cornwall-type’ iron deposits. U–Pb dating of zircons from a diabase dyke using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields an age of 128.5 ± 0.3 Ma, indicating an Early Cretaceous crystallization age. Most of the diabases show low Mg-numbers, suggesting evolved magmas. The diabase dykes show typical ophitic or sub-ophitic textures, and are dominantly composed of phenocrysts of plagioclase (40–50%) and clinopyroxene (30–45%), with minor and varying amounts of biotite and hornblende (1–5%), and minor disseminated magnetite (∼5%). Their mineralogy reflects magma differentiation under relatively low oxygen fugacity conditions. The diabase dykes are characterized by minor variation in SiO2 (44.67–49.76 wt.%) and MnO (0.14–0.26 wt.%), but show a marked range of Al2O3 (10.66–14.21 wt.%), total Fe2O3 (9.52–13.88 wt.%), TiO2 (0.66–2.82 wt.%) and relatively high MgO (4.87–9.29 wt.%) with an Mg# value [atomic Mg/(Mg + Fe2+)] of up to 66. The Cihai diabases possibly experienced fractional crystallization of olivine + clinopyroxene and minor crustal contamination during the differentiation process. Prominent negative Nb, Ta and Ti anomalies suggest derivation from subduction-modified mantle. Furthermore, the rocks have relatively unradiogenic Sr- and Nd-isotopic ratios. These characteristics probably reflect partial melting of a subduction component in the source mantle lithosphere through heat input from an upwelling asthenospheric mantle. Such processes probably occurred within an extensional setting during the Early Cretaceous in the Beishan area. The iron-rich fluids were derived from deep sources, and the iron ores were concentrated through a convection cell driven by temperature gradients established by the intrusion of the diabase sills. The combined processes of subduction-related enrichment in the source, shallow depth of emplacement, and the involvement of large-scale circulation of basinal brines from an evaporitic source are inferred to have contributed to the formation of the ‘Cornwall-type’ mineralization in Cihai.  相似文献   

9.
The magnetite deposits of the Turgai belt (Kachar, Sarbai and Sokolov), in the Valerianovskoe zone of the southern Urals, Kazakhstan, contain a combined resource of over 3 Gt of iron oxide ore. The deposits are hosted by carbonate sediments and volcaniclastic rocks of the Carboniferous Valerianovka Supergroup, and are spatially related to the gabbroic to granitoid composition intrusive rocks of the Sarbai–Sokolov intrusive series. The magnetite deposits are developed dominantly as metasomatic replacement of limestone, but also, to a lesser extent, of volcanic rocks. Pre-mineralisation metamorphism and alteration resulted in the formation of wollastonite and the silicification of limestone. Magnetite mineralisation is associated with the development of a high temperature skarn assemblage of diopside, grossular–andradite garnet, actinolite, epidote and apatite. Sub-economic copper-bearing sulphide mineralisation overprints the magnetite mineralisation and is associated with deposition of hydrothermal calcite and the formation of an extensive sodium alteration halo dominated by albite and scapolite. Chlorite formation accompanies this stage and further later stage hydrothermal overprints. The replacement has in places resulted in preservation of primary features of the limestone, including fossils and sedimentary structures in magnetite, skarn calc-silicates and sulphides.Analysis of Re–Os isotopes in molybdenite indicates formation of the sulphide mineral assemblage at 336.2 ± 1.3 Ma, whilst U–Pb analyses of titanite from the skarn alteration assemblage suggests skarn alteration at 326.6 ± 4.5 Ma with re-equilibration of isotope systematics down to ~ 270 Ma. Analyses of mineral assemblages, fluid inclusion microthermometry, O and S isotopes suggest initial mineralisation temperatures in excess of 600 °C from hypersaline brines (45–50 wt.% NaCl eq.), with subsequent cooling and dilution of fluids to around 150 °C and 20 wt.% NaCl eq. by the time of calcite deposition in late stage sulphide-bearing veins. δ18O in magnetite (− 1.5 to + 3.5‰) and skarn forming silicates (+ 5 to + 9‰), δ18O and δ13C in limestone and skarn calcite (δ18O + 5.4 to + 26.2‰; δ13C − 12.1 to + 0.9‰) and δ34S in sulphides (− 3.3 to + 6.6‰) and sulphates (+ 4.9 to + 12.9‰) are all consistent with the interaction of a magmatic-equilibrated fluid with limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic–hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the large Na-alteration halo. Despite the reported presence of evaporites in the area there is no evidence for evaporitic sulphur in the mineralising system.These skarns show similarities to some members of the iron oxide–apatite and iron oxide–copper gold deposit classes and the model presented here may have implications for their genesis. The similarity in age between the Turgai deposits and the deposits of the Magnitogorsk zone in the western Urals suggests that they may be linked to similar magmatism, developed during post-orogenic collapse and extension following the continent–continent collision, which has resulted in the assembly of Laurussian terranes with the Uralide orogen and the Kazakh collage of the Altaids or Central Asian Orogenic Belt. This model is preferred to the model of simultaneous formation of very similar deposits in arc settings at either side of an open tract of oceanic crust forming part of the Uralian ocean.  相似文献   

10.
The Sangan iron skarn deposit is located on the eastern edge of the Sabzevar-Doruneh Magmatic Belt, northeastern Iran. Mineralization occurs at the contact between Eocene igneous rocks and Cretaceous carbonates. The silicate-dominant prograde skarn stage consists of garnet and clinopyroxene, whereas the retrograde stage is dominated by magnetite associated with minor hematite, phlogopite, pyrite, and chalcopyrite. Phase equilibria and mineral chemistry studies reveal that the skarn formed within a temperature range of ∼375° to 580 °C and that the mineralizing fluid evolved from a hot, low oxygen fugacity, alkaline fluid during the silicate-dominant stage to a fluid of relatively lower temperature and higher oxygen fugacity at the magnetite-dominant stage. The δ18O values of magnetite and garnet vary from +3.1 to +7.5‰ and +7.7 to +11.6‰, respectively. The calculated δ18OH2O values of fluid in equilibrium with magnetite and garnet range from +9.8 to +11.1‰ and +10.1 to +14.8‰, respectively. These elevated δ18OH2O values suggest interaction of magmatic water with 18O-enriched carbonates. The high δ34S values (+10.6 to +17.0‰) of pyrite separates from the Sangan iron ore indicate that evaporites had an important role in the evolution of the hydrothermal fluid. Phlogopite separates from the massive ores yield 40Ar/39Ar plateau ages of 41.97 ± 0.2 and 42.47 ± 0.2 Ma, indicating that the skarn formation and associated iron mineralization was related to the oldest episode of magmatism in Sangan at ∼42 Ma. Eocene time marked a peak of magmatic activity and associated skarn in the post-collisional setting in northeastern Iran, whereas Oligo-Miocene magmatic activity and associated skarn in the Urumieh-Dokhtar Magmatic Belt are related to subduction. In addition, skarn mineralization in northeastern and eastern Iran is iron type, but skarn mineralization in the Urumieh-Dokhtar magmatic belt is copper – iron and copper type.  相似文献   

11.
The Chadormalu is one of the largest known iron deposits in the Bafq metallogenic province in the Kashmar-Kerman belt, Central Iran. The deposit is hosted in Precambrian-Cambrian igneous rocks, represented by rhyolite, rhyodacite, granite, diorite, and diabasic dikes, as well as metamorphic rocks consisting of various schists. The host rocks experienced Na (albite), calcic (actinolite), and potassic (K-feldspar and biotite) hydrothermal alteration associated with the formation of magnetite–(apatite) bodies, which are characteristic of iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) systems. Iron ores, occurring as massive-type and vein-type bodies, consist of three main generations of magnetite, including primary, secondary, and recrystallized, which are chemically different. Apatite occurs as scattered irregular veinlets in various parts of the main massive ore-body, as well as apatite-magnetite veins and disseminated apatite grains in marginal parts of the deposit and in the immediate wall rocks. Minor pyrite occurs as a late phase in the iron ores. Chemical composition of magnetite is representative of an IOA or Kiruna-type deposit, which is consistent with other evidence.Whole rock geochemical data from various host rocks confirm the occurrence of Na, Ca, and K alteration consistent with the formation of albite, actinolite, and K-feldspar, respectively. The geochemical investigation also includes the nature of calc-alkaline igneous rocks, and helps elaborating on the spatial and temporal association, and possible contribution of mafic to felsic magmas to the evolution of ore-bearing hydrothermal fluids.Fluid inclusion studies on apatites from massive- and vein-type ores show a range of homogenization temperatures from 266 to 580 °C and 208–406 °C, and salinities from 0.5 to 10.7 wt.% and 0.3–24.4 wt.% NaCl equiv., respectively. The fluid inclusion data suggest the involvement of evolving fluids, from low salinity-high temperature, to high salinity-low temperature, in the formation of the massive- and vein-type ores, respectively. The δ34S values obtained for pyrite from various parts of the deposit range between +8.9 and +14.4‰ for massive ore and +18.7 to +21.5‰ for vein-type ore. A possible source of sulfur for the 34S-enriched pyrite would be originated from late Precambrian-early Cambrian marine sulfate, or fluids equilibrated with evaporitic sulfates.Field observations, ore mineral and alteration assemblages, coupled with lithogeochemical, fluid inclusion, and sulfur isotopic data suggest that an evolving fluid from magmatic dominated to surficial brine-rich fluid has contributed to the formation of the Chadormalu deposit. In the first stages of mineralization, magmatic derived fluids had a dominant role in the formation of the massive-type ores, whereas a later brine with higher δ34S contributed to the formation of the vein-type ores.  相似文献   

12.
Cihai and Cinan are Permian magnetite deposits related to mafic-ultramafic intrusions in the Beishan region, Xinjiang, NW China. The Cihai mafic intrusion is dominantly composed of dolerite, gabbro and fine-grained massive magnetite ore, while gabbro, pyrrhotite + pyrite-bearing clinopyroxenite and magnetite ore comprise the major units in Cinan. Clinopyroxene occurs in both deposits as 0.1–2 mm in diameter subhedral to anhedral grains in dolerite, gabbro and clinopyroxenite. High FeO contents (11.7–28.9 wt%), low SiO2 (43.6–54.3 wt%) and Al2O3 contents (0.15–6.08 wt%), and low total REE and trace element contents of clinopyroxene in the Cinan clinopyroxenite imply crystallization early, at high pressure. This clinopyroxene is FeO-rich and Si and Ti-poor, consistent with the clinopyroxene component of large-scale Cu-Ni sulfide deposits in the Eastern Tianshan and Panxi ares, as well as Tarim mafic intrusion and basalt, implying the Cinan mafic intrusion and sulfide is related to tectonic activity in the Tarim LIP. The similar mineral chemistry of clinopyroxene, apatite and magnetite in the Cihai and Cinan gabbros (e.g., depleted LREE, negative Zr, Hf, Nb and Ta anomalies in clinopyroxene, lack of Eu anomaly in apatite and similarity of oxygen fugacity as indicated by V in magnetite), indicate similar parental magmatic characteristics. Mineral compositions suggest a crystallization sequence of clinopyroxenite/with a small amount of sulfide – gabbro – magnetite ore in the Cinan deposit, and magnetite ore – gabbro – dolerite in Cihai. The basaltic magma was emplaced at depth, with magnetite segregation (and formation of the Cinan magnetite ores) occurring in relatively low fO2 conditions, after clinopyroxenite and gabbro fractional crystallization. The evolved Fe-rich basaltic magma rapidly rose to intermediate or shallow depths, forming an immiscible Fe-Ti oxide magma as fO2 increased and leaving a Fe-poor residual magma in the chamber. The residual magmas was emplaced at different levels in the crust, forming the Cihai gabbro and dolerite, respectively. Finally, the immiscible Fe-Ti oxide magma was emplaced into the earlier formed dolerite because of late magma pulse uplift, resulting in a distinct boundary between the magnetite ores and dolerite.  相似文献   

13.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

14.
The Beiya gold–polymetallic deposit is one of the largest gold deposits in China and is considered to be a typical porphyry-skarn system located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt. Massive magnetite is widespread in the Beiya ore district but its genesis is still the subject of debate. Five representative magnetite types are present in the Beiya deposit, namely magmatic magnetite (M1) from the ore-related porphyry, disseminated magnetite (M2) from the early retrograde alteration, massive magnetite (M3) from the early quartz-magnetite stage, massive magnetite (M4) from the middle quartz-magnetite stage and magnetite (M5) from the late quartz-magnetite stage. Compared with the M1 magnetite, the magnetites from stages M2 to M5 are depleted in Ti, Al and high field strength elements, implying a hydrothermal origin, distinct from the magmatic accessory magnetite in the ore-related porphyry (M1). The concentrations of cobalt in the hydrothermal magnetites decrease gradually from M2 to M5, and can be used to discriminate the magnetite types. The Al + Mn and Ti + V contents of the successively precipitated magnetite grains (M2–M5) suggests that the ore forming temperature decreased from M2 to M4, but increased from M4 to M5, possibly as the result of a new pulse of magma entering the chamber, which may have triggered the gold mineralization. The V content in the hydrothermal magnetite suggests that the oxygen fugacity increased from M2 to M4 but decreased as soon as the sulfides entered the system (M5).  相似文献   

15.
新疆磁海铁(钴)矿床次火山热液成矿学   总被引:17,自引:4,他引:13  
磁海铁(钴)矿床颇具特色,以“石榴石-透辉石-磁铁矿”为基本矿石建造;成矿作用发生在早二叠世北山裂陷作用和火成活动晚期,以基性次火山岩浆期后富铁流体的(交代)充填为成矿方式,矿体产于辉绿岩体原生裂隙系统;成矿流体的化学演化具有典型(火山)岩浆期后热深演化特点,形成了一系列热液蚀变其中石榴石透辉石岩有别于传统理解的“夕卡岩”;成矿物质源于碱性玄武岩浆,基性次火山岩浆多次脉动式入侵是矿床形成的必要条件  相似文献   

16.
The western Tianshan metallogenic belt is one of the most significant polymetallic iron metallogenic belts in China. Important advances have been achieved recently in iron exploration in the Awulale Mountain in western Tianshan, China. These newly-discovered iron deposits are mainly hosted in the basic-medium andesitic lavas and volcaniclastics, often comprising a number of high-grade ores. Magnetite is predominated in ore mineral assemblages, and pyrite, chalcopyrite, pyrrhotite or sphalerite increase in certain deposits. Wallrock alterations are intensively developed, exemplified as sodic–calcic and potassic alterations which display in different patterns as country rocks and ore-controlled structures vary. Skarn assemblages are commonly developed in ore districts like Beizhan, Dunde and Chagangnuoer, and pyroxene + albite + K-feldspar  epidote + actinolite alterations are dominated around ore bodies in Zhibo deposit, whereas the Shikebutai deposit develops alteration assemblages comprising of jasper, barite, sericite, and chlorite. Thus, iron deposits can be divided into three types including volcanic-sedimentary type, volcanic magmatic-hydrothermal type and iron skarn type. Our preliminary interpretation about the tectonic background of this iron mineralization in this area is in the late stage of a collisional–accretional orogenic belt around Carboniferous, with some extrusional–extensional tectonic transition locally. Iron mineralization is likely to have a close genetic relationship with volcanic–subvolcanic activity, syn- or slightly post- the volcanism which took place besides continental arc. Volcanic eruption contributes to majority of mineralizing iron, with minor extracted from hydrothermal replacement from wall rocks.  相似文献   

17.
新疆东天山是中国重要铁铜多金属成矿带之一,磁海大型铁矿床位于该成矿带南缘的北山裂谷带内。铁矿体赋存于早期辉绿岩和矽卡岩中,呈透镜状、脉状近平行排列,后期辉绿岩脉穿切早期辉绿岩和矿体。在野外地质调查的基础上,文章对早期辉绿岩和成矿期后辉绿岩脉进行了年代学研究。锆石LA-MC-ICP MS U-Pb测年结果表明,赋矿辉绿岩的形成时代为(286.5±1.8)Ma和(284.8±1.3)Ma,辉绿岩脉形成于(275.8±2.2)Ma,由此限定磁海铁矿床的形成年龄在286~275 Ma,属于早二叠世成矿。结合区域岩浆和构造活动研究成果认为,磁海铁矿床成矿作用与东天山地区早二叠世大规模镁铁质-超镁铁质岩浆作用密切相关,形成于碰撞后伸展构造环境中。  相似文献   

18.
The Cihai iron-cobalt deposit is located in the southern part of the eastern Tianshan ironpolymetallic metallogenic belt. Anomalous native gold and bismuth have been newly identified in Cinan mining section of the Cihai deposit. Ore formation in the deposit can be divided into three stages based on geological and petrographical observations:(I) skarn, with the main mineral assemblage being garnet-pyroxene-magnetite;(II) retrograde alteration, forming the main iron ores and including massive magnetite, native gold, native bismuth, and cobalt-bearing minerals, with the main mineral assemblage being ilvaite-magnetite-native gold-native bismuth; and(III) quartz-calcitesulfide assemblage that contains quartz, calcite, pyrrhotite, cobaltite, and safflorite. Native gold mainly coexists with native bismuth, and they are paragenetically related. The temperature of initial skarn formation was higher than 340℃, and then subsequently decreased to ~312℃ and ~266℃. The temperature of the hydrothermal fluid during the iron ore depositional event was higher than the melting point of native bismuth(271℃), and native bismuth melt scavenged gold in the hydrothermal fluid, forming a Bi-Au melt. As the temperature decreased, the Bi-Au melt was decomposed into native gold and native bismuth. The native gold and native bismuth identified during this study can provide a scientific basis for prospecting and exploration for both gold- and bismuth-bearing deposits in the Cihai mining area. The gold mineralization in Cihai is a part of the Early Permian Cu-Ni-Au-Fe polymetallic ore-forming event, and its discovery has implications for the resource potential of other iron skarn deposits in the eastern Tianshan.  相似文献   

19.
The Fuxing porphyry Cu deposit is a recently discovered deposit in Eastern Tianshan, Xinjiang, northwestern China. The Cu mineralization is associated with the Fuxing plagiogranite porphyry and monzogranite, mainly presenting as various types of hydrothermal veins or veinlets in alerted wall rocks, with potassic, chlorite, phyllic, and propylitic alteration developed. The ore-forming process can be divided into four stages: stage I barren quartz veins, stage II quartz–chalcopyrite–pyrite veins, stage III quartz–polymetallic sulfide veins and stage IV quartz–calcite veins. Four types of fluid inclusions (FIs) can be distinguished in the Fuxing deposit, including hypersline (H-type), vapor-rich two-phase (V-type), liquid-rich two-phase (L-type), and trace amounts of pure vapor inclusions (P-type), but only the stage I quartz contains all types of FIs. The stages II and III quartz have two types of FIs, with exception of H- and P-types. In stage IV quartz minerals, only the L-type inclusions can be observed. The FIs in quartz of stages I, II, III and IV are mainly homogenized at temperatures of 357–518 °C, 255–393 °C, 234–322 °C and 145–240 °C, with salinities of 1.9–11.6 wt.% NaCl equiv., 1.6–9.6 wt.% NaCl equiv., 1.4–7.7 wt.% NaCl equiv. and 0.9–3.7 wt.% NaCl equiv., respectively. The ore-forming fluids of the Fuxing deposit are characterized by high temperature, moderate salinity and relatively oxidized condition. Carbon, hydrogen and oxygen isotopic compositions of quartz indicate that the ore-forming fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials were derived from a deep-seated magma source. The Cu mineralization in the Fuxing deposit occurred at a depth of ~ 1 km, and the changes of oxygen fugacity, decompression boiling, and local mixing with meteoric water were most likely critical for the formation of the Fuxing Cu deposit.  相似文献   

20.
Stratabound massive sulfide deposits are widespread along the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and serve as an important copper producer in China. Two contrasting genetic models have been proposed, interpreting the stratabound massive sulfide deposits as a Carboniferous SEDEX protore overprinted by Cretaceous magmatic-hydrothermal system or an Early Cretaceous carbonate replacement deposit. These two contrasting models have been applied to the Xinqiao stratabound Cu-Au sulfide deposit, which is dominated by massive sulfide ores hosted in marine carbonates of the Carboniferous Chuanshan and Huanglong Formations, with minor Cu-Au skarn ores localized in the contact zone between the Cretaceous diorite Jitou stock and the Carboniferous carbonate rocks. New SIMS zircon U-Pb dating suggests that the Jitou stock formed at 138.5 ± 1.1 Ma (2σ, MSWD = 0.6). Pyrite Re-Os dating yields an imprecise date of 142 ± 47 Ma (2σ, MSWD = 7.8). The geochronological data thus constrain the mineralization of the Xinqiao deposit at Early Cretaceous.Fluid inclusions in prograde skarn diopside have homogenization temperatures of 450–600 °C and calculated salinities of 13–58 wt.% NaCl equiv. Quartz from the stratabound ores and pyrite-quartz vein networks beneath the stratabound ores have homogenization temperatures of 290–360 and 200–300 °C, with calculated salinities of 5–12 and 2–10 wt.% NaCl equiv., respectively. Quartz from the skarn ores and veins beneath the stratabound ores have δ18O values of 12.32 ± 0.55 (2 SD, n = 22) and 15.57 ± 1.92‰ (2 SD, n = 60), respectively, corresponding to calculated δ18O values of 6.22 ± 1.59 (2σ) and 6.81 ± 2.76‰ (2σ) for the equilibrated ore-forming fluids. The fluid inclusion and oxygen isotope data thus support a magmatic-hydrothermal origin rather than a SEDEX system for the stratabound ores, with the hydrothermal fluids most likely being derived from the Jitou stock or associated concealed intrusion. Results from this study have broad implications for the genesis and exploration of other stratabound massive sulfide deposits along the MLYMB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号