首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

2.
Throughout its history, the Earth has experienced global magmatic events that correlate with the formation of supercontinents. This suggests that the distribution of continents at the Earth's surface is fundamental in regulating mantle temperature. Nevertheless, most large igneous provinces (LIPs) are explained in terms of the interaction of a hot plume with the lithosphere, even though some do not show evidence for such a mechanism. The aggregation of continents impacts on the temperature and flow of the underlying mantle through thermal insulation and enlargement of the convection wavelength. Both processes tend to increase the temperature below the continental lithosphere, eventually triggering melting events without the involvement of hot plumes. This model, called mantle global warming, has been tested using 3D numerical simulations of mantle convection [Coltice, N., Phillips, B.R., Bertrand, H., Ricard, Y., Rey, P. (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–394.]. Here, we apply this model to several continental flood basalts (CFBs) ranging in age from the Mesozoic to the Archaean. Our numerical simulations show that the mantle global warming model could account for the peculiarities of magmatic provinces that developed during the formation of Pangea and Rodinia, as well as putative Archaean supercontinents such as Kenorland and Zimvaalbara.  相似文献   

3.
Kent C. Condie   《Lithos》2005,79(3-4):491-504
In terms of high field strength element ratios Nb/Th, Zr/Nb, Nb/Y and Zr/Y, most basalts from non-arc type Archean greenstones are similar to oceanic plateau basalts, suggestive of mantle plume sources. A large number of these basalts have ratios similar to primitive mantle composition. Perhaps the Archean mantle was less fractionated than at present and “primitive mantle” comprised much of the deep mantle and made a significant contribution to mantle plumes. The near absence of Archean greenstone basalts similar to NMORB in composition is also consistent with a relatively unfractionated mantle in which a shallow depleted source (DM) was volumetrically insignificant. The element ratios in basalts also indicate the existence of recycled components (HIMU, EM1, EM2) in the mantle by the Late Archean. This suggests that oceanic lithosphere was recycled into the deep mantle and became incorporated in some mantle plumes by the Late Archean. High field strength element ratios also indicate an important contribution of continental crust or/and subcontinental lithosphere to some non-arc Archean greenstone basalts. This implies that at least thin continental lithosphere was relatively widespread in the Archean.  相似文献   

4.
地幔柱构造、大火成岩省及其地质效应   总被引:61,自引:6,他引:61  
徐义刚 《地学前缘》2002,9(4):341-353
地幔柱是源于核幔边界或上下地幔边界的热异常物质 ,其隐含的巨大能量导致地幔的大规模熔融和大火成岩省的形成。不同时代的科马提岩和苦橄岩的地球化学性质表明地幔柱源区经历了由太古宙时的亏损源区向现代OIB型源区演化的历程 ,可能与壳幔再循环强度的不断增加有关。地幔柱活动和大火成岩事件与大陆裂解 ,全球气候变迁 ,生物灭绝事件 ,磁极倒转和一些大型矿产资源的形成均有密切的联系。文中还介绍了中国开展地幔柱和大火成岩省研究的概况。  相似文献   

5.
This paper reviews the Mesozoic continental flood basalts (CFBs) associated with the break-up and dispersal of Gondwana from 185-60 Ma, the conditions for melt generation in mantle plumes and within the continental mantle lithosphere, and possible causes for lithospheric extension. The number of CFB provinces within Gondwana is much less than the number of mantle plumes that are likely to have been emplaced beneath it in the 300 Ma prior to its initial break-up. Also, the difference between the age of the peak of CFB volcanism and that of the oldest adjacent ocean crust decreases with the age of volcanism during the break-up and dispersal of Gondwana. The older CFBs of Karoo and Ferrar appear to have been derived largely from source regions within the mantle lithosphere. It is only in the younger Paranâ-Etendeka and Deccan CFBs that there are igneous rocks with major, trace element and radiogenic isotope ratios indicative of melting within a mantle plume. These younger CFBs are also clearly associated with hot spot traces on the adjacent ocean floor. The widespread 180 Ma magmatic event is attributed to partial melting within the lithosphere in response to thermal incubation over 300 Ma. In the case of the Ferrar (Antarctica) this was focussed by regional plate margin forces. The implication is that supercontinents effectively self-destruct in response to the build up of heat and resultant magmatism, since these effects significantly weaken the lithosphere and make it more susceptible to break-up in response to regional tectonics. The younger CFB of Paranâ-Etendeka was generated, at least in part, because the continental lithosphere had been thinned in response to regional tectonics. While magmatism in the Deccan was triggered by the emplacement of the plume, that too may have been beneath slightly thinned lithosphere.  相似文献   

6.
Palaeogene basalts from the margins of the North Atlantic oftenshow geochemical variations that are consistent with their parentalmagmas having interacted with the lithosphere en route to theEarth’s surface. These geochemical trends vary dependingon the nature of the local lithospheric contaminants. Usingexamples from the British Tertiary Igneous Province and SE Greenland,we construct coherent contamination trends, which converge ona restricted Pb isotope composition, apparently indicating acommon uncontaminated asthenospheric mantle component. Significantly,this composition is also suitable as one end-member of the Pbisotope arrays recorded in Recent Icelandic basalts. We concludethat this composition has been a persistent component of theIceland plume over 60 my, dominating the mantle contributionto the Palaeocene phase of flood basalt magmatism but constitutingonly one end-member on Iceland. The Pb isotope composition ofthis ‘North Atlantic end-member’ is consistent with,but not necessarily demanding of, a primordial source. Recentevidence suggesting a lower-mantle origin for mantle plumesencourages investigation of whether the geochemical evidencesupports that hypothesis. Helium isotope data from PalaeogeneNorth Atlantic basalts support a lower-mantle contribution.However, mixing models suggest that it is unlikely that thelower-mantle contribution is large enough to dominate the Sr–Nd–Pbisotope compositions and lithophile trace element signaturesof any plume-derived basalts. KEY WORDS: North Atlantic; Iceland; lower mantle; mantle plumes; flood basalts; isotopes  相似文献   

7.
地幔柱构造理论研究若干问题及研究进展   总被引:3,自引:0,他引:3  
介绍了目前地幔柱构造理论研究中若干重要问题和最新进展,许多证据显示,地幔柱是严自于核幔边界附近的D″层发生热扰动并产生地幔柱的热动力源于外地核的不均匀加热作用;一个新启动的地幔柱在穿过整个地幔的缓慢上升过程会形成巨大球状顶冠和狭窄尾柱;地幔柱巨大球状顶冠会导致地壳发生上隆、区域变质作用、地壳深熔作用、构造变形作用和大规模火山作用,形成大陆或大洋溢流玄武岩;地幔柱狭窄尾柱的长期活动会在上覆运动板块上  相似文献   

8.
辽西早白垩世义县组火山夺的起源及壳幔相互作用   总被引:11,自引:1,他引:11  
对燕山造山带辽西早白垩世义县组火山岩的Nd,Sr,Pb同位素分析,作者认为义县组火山岩起源于岩石圈地幔的部分熔融,岩浆在上侵过程中发生了结晶分异和同化混染作用,即AFC过程。与新生代汉诺坝玄武岩中的中生代镁铁质麻粒岩捕虏体和太古代片麻岩对比研究,发现义县组火山岩与这些镁铁质麻粒岩捕虏体有许多地球化学相似之处,而与长英质麻粒岩捕虏体和太古代各种片麻岩差别较大。作者认为早白垩世燕山板内造山带发生了强烈的岩石圈伸展作用,辽西义县组火山岩和汉坝新生代玄武岩中的镁铁质麻粒岩捕虏体均为这一构造背景下的产物,它们属于幔源岩浆喷发与大规模玄武zh质岩浆底侵作用形成的“同质异相体”。  相似文献   

9.
峨眉山大火成岩省:地幔柱活动的证据及其熔融条件   总被引:138,自引:5,他引:138  
对苦橄岩中橄榄石斑晶及其中熔体包裹体的电子探针分析表明,峨眉山大火山岩省的原始岩浆具高镁( MgO > 16%)特征。玄武岩的 REE反演计算揭示,参与峨眉山玄武岩岩浆作用的地幔具有异常高的潜能温度( 1 550℃)。这些特征以及峨眉山玄武岩的大面积分布和一些熔岩所显示的类似于洋岛玄武岩 (OIB)的微量元素和 Sr- Nd同位素特征均为地幔热柱在能量和物质上参与峨眉山溢流玄武岩的形成提供了确凿证据。峨眉山两个主要岩类(高钛和低钛玄武岩)可能是不同地幔源区物质在不同条件下的熔融产物。低钛玄武岩形成于温度最高、岩石圈最薄的地幔柱轴部。地幔( ISr≈ 0.705,ε Nd(t)≈+ 2)熔融始于 140 km,并一直延续到较浅的深度( 60 km,尖晶石稳定区 ),部分熔融程度为 16%,这类岩石可能代表了峨眉山玄武岩的主体。而高钛玄武岩的母岩浆的形成基本局限在石榴子石稳定区( > 70 km),其源区特征为 : ISr≈ 0.704,ε Nd(t)≈+ 5,可能代表了热柱边部或消亡期地幔小程度部分熔融( 1.5%)的产物。  相似文献   

10.
The existence of peridotitic komatiites in the Archaean suggests that the Archaean mantle was significantly hotter than the modern mantle. This evidence is contradicted by estimates of Archaean continental geothermal gradients, based on the pressure and temperature recorded in metamorphic rocks, which suggest that there is no marked difference between Archaean and modern continental geothermal gradients.Numerical modelling shows that small changes in the mantle temperature can have an important influence on convection. If the average temperature of the upper mantle is increased by 200°C, convection within the mantle becomes chaotic and an upper mantle partial melt zone encircles the globe. The crust formed during this period will be komatiitic in composition but will be unstable and will be mixed back into the mantle by subduction. Later, when the mantle temperature falls to 100°C above its present level, the upper mantle partial melt zone contracts away from subduction areas.It is suggested that the first primitive felsic magmas were generated at subduction zones. The appearance of these magmas at ~3.8 Ga permitted the formation of buoyant continents and eventually led to crustal thickening. As a consequence of this thickening the proto-continents, consisting of a bimodal suite of basalts and sodic granodiorites, contained two types of latent energy: (1) radioactive energy held in elements such as Th, K and U; and (2) potential energy resulting from the elevation of the continents above sea level. The potential energy of the continents led to sedimentation. The increase in the rate of sedimentation during the Archaean resulted from increased crustal buoyancy. At the same time heat released by radioactive elements in the deep crust built up under the insulating blanket of the upper crust. This caused a major metamorphic, metasomatic and crustal melting event which produced the potassic granites of the late Archaean. Once the radioactive elements had been removed from the lower crust, that region of the continent become tectonically stable. The Proterozoic shelf sediments were deposited at the margins of these stable cratons.Convection models of the Archaean mantle show hot diapirs rising from the boundary layer above the core—mantle interface. We suggest that these diapirs began to melt at a depth of ~ 450 km, giving rise to komatiitic magmas. This model requires the average temperature of the Archaean upper mantle to be ~ 100°C above that of the modern mantle. The similarity between Archaean and modern continental geothermal gradients can be explained if Archaean continents formed above subduction zones.Raising the temperature of the Archaean mantle by 100°C (1) halves the thickness of the oceanic lithosphere, (2) increases the oceanic geothermal gradient at the mid-point of a convection cell, (3) decreases the viscosity of the mantle by at least an order of magnitude. The combination of these effects produces a marked decrease in the strength of the Archaean lithosphere and mantle. Thus the form of Archaean tectonics can be expected to have been very different from modern tectonics.  相似文献   

11.
During the Neogene, a magmatic change from calc-alkaline to alkaline types occurred in all the regions surrounding the western Mediterranean. This change has been studied in Oranie (western Algeria). In this area, potassic to shoshonitic calc-alkaline andesites (with La/Nb ratios in the range 4–6) were mainly erupted between 12 and 9 Ma. They were followed (between 10 and 7 Ma) by basalts displaying geochemical features which are transitional between calc-alkaline and alkaline lavas (La/Nb=1–1.7). After a ca. 3-Ma quiescence period, volcanic activity resumed, with the eruption of OIB-type alkaline basalts (La/Nb=0.5–0.6), from 4 to 0.8 Ma. A combined geochemical approach, using incompatible elements and Sr, Nd and O isotopes, allows us to conclude that the transitional basalts derived from the melting of a heterogeneous mantle source, at the boundary between lithosphere and asthenosphere. We propose that melting of a previously subduction-modified lithospheric mantle occurred between 12 and 10 Ma, in response to the upwelling of hot asthenosphere flowing up into an opening gap above a detached sinking slab. As a result, calc-alkaline magmas were formed. From 10 to 7 Ma, the transitional basalts were generated through melting of the boundary mantle zone between the lithosphere and the upwelling asthenosphere. During that stage, the contribution of the lithospheric source was still predominant. Then, as sinking of the oceanic slab progressed, the increasing uprise of the asthenosphere led to the formation and emplacement (from 4 to 0.8 Ma) of typical within-plate alkaline basalts derived from a plume-modified asthenospheric mantle.  相似文献   

12.
Rare earth element (REE) and major element data are presented on 44 Archaean samples which include spinifex textured ultramagnesian lavas (STPK) spinifex textured basalts (STB) and low MgO tholeiites. The samples come from the Yilgarn and Pilbara Blocks (W. Australia), Barberton (South Africa), Belingwe and Que Que (Rhodesia), Abitibi (Canada) and the 3.7 b.y. Isua Belt of Western Greenland. In addition REE data are given on three near primitive mid-ocean ridge basalts (MORB) and a glassy MORB-type basalt from Taiwan. We suggest that REE patterns, particularly the light REE and Eu, can be affected by metamorphism, but argue that the consistency of pattern from samples both within and between areas enables recognition of primary patterns. La/Sm ratios of 2.7 b.y. STPK are characterised by being lower than those of associated basalts. The 3.5 b.y. STPK Barberton material does not show this feature but instead displays significant heavy REE depletion. The separation of garnet from these liquids is suggested as a possible mechanism for the high CaO/Al2O3 ratios, (Al loss) and the heavy REE and Sc depletion. The REE data on Barberton material is equivocal on the derivation of the so-called basaltic komatiites from the peridotitic komatiites. However, REE analyses on STPK and high magnesian lavas from elsewhere suggests that crystal fractionation is not a viable mechanism to produce one from the other. We suggest instead, that varying amounts of partial melting of different sources is responsible for the spectrum of compositions. The STB appear to be an easily recognised rock type within the Archaean. They are characterised by quench (clinopyroxene) textures and a light REE enriched pattern. It is suggested that these are near primary melts and that their REE patterns mirror their mantle source. We propose a two stage model for the 2.7 b.y. mafic complexes, in which, prior to the generation of ultrabasic magmas, the source underwent a small amount of partial melting which resulted in the removal of a melt enriched in incompatible elements. The depletion process could be achieved either during mantle diapirism or by upward migration of interstitial melts into an Archaean low velocity zone. The spread of La/Sm ratios in STPK and STB is used as an argument that the Archaean mantle was chemically heterogeneous and that the degree of heterogeneity was similar to that observed in modern ocean volcanics. As a result, partial melting of the mantle under different P-T conditions produced a spectrum of magma types. The information presently available on Archaean mafic and silicic magmatism and the incompleteness of geochemical data on present day tectonic environments are two major obstacles in formulating Archaean tectonic models. In addition a comparison of present day and Archaean ultramafic and silicic rocks suggests that plate tectonic models as presently understood may not be suitable analogues for all Archaean tectonic environments.  相似文献   

13.
Approximately 1650-Ma-old NW/SE and NE/SW-trending dolerite dykes in the Tiruvannamalai (TNM) area and approximately 1800-Ma-old NW/SE-trending dolerite dykes in the Dharmapuri (DP) area constitute major Proterozoic dyke swarms in the high-grade granulite region of Tamil nadu, southern India. The NW- and NE-trending TNM dykes are compositionally very similar and can be regarded as having been formed during a single magmatic episode. The DP dykes may relate to an earlier similar magmatic episode. The dolerites are Fe-rich tholeiites and most of the elemental variations can be explained in terms of fractional crystallisation. Clinopyroxene and olivine are the inferred ferromagnesian fractionation phases followed by plagioclase during the late fractionation stages. All the studied dykes have, similar to many continental flood basalts (CFB), large-ion lithophile element (LILE) and light rare-earth element (LREE) enrichment and Nb and Ta depletion. The incompatible element abundance patterns are comparable to the patterns of many other Proterozoic dykes in India and Antarctica, to the late Archaean (~2.72 Ga) Dominion volcanics in South Africa and to the early Proterozoic (~2.0 Ga) Scourie dykes of Scotland. The geochemical characteristics of the TNM and DP dykes cannot be explained by crustal contamination alone. Instead, they are consistent with derivation from an enriched lithospheric mantle source which appears to have been developed much earlier than the dyke intrusions during a major crustal building event in the Archaean. The dyke magmas may have been formed by dehydration melting induced by decompression and lithospheric attenuation or plume impingement at the base of the lithosphere. These magmas, compared with CFB, appear to be the minor partial melts from plume heads of smaller diameter and of shallow origin (650 km). Therefore, the Proterozoic thermal events could induce crustal attenuation and dyke intrusions in contrast to the extensive CFB volcanism and continental rifting generally associated with the Phanerozoic plumes of larger head diameter (>1000 km) and of deeper origin (at crust mantle boundary).  相似文献   

14.
地球化学急变带与地幔柱资源系统   总被引:7,自引:2,他引:7  
地幔柱产生大面积软流圈上涌,沿深断裂形成岩浆房,导致大规模溢流玄武岩裂隙式喷发。良好的地幔柱成矿系统常出现在岩石圈不连续界面和三叉拼接裂谷,表现为地球化学急变带。地幔柱资源系统包括以下几方面:(1)地幔柱岩浆分异成矿系统,从封闭到开放环境的岩浆分异形成了富钛、富镁和低钛三个岩浆端员,构成了Cu—Ni(PGE)硫化物、Fe—Ti—V氧化物和Cu—Ag自然金属三个成矿体系;(2)地幔柱同生火山热液成矿系统,包括赤铁矿—阳起石—硅化氧化铜,沥青化—绿泥石—浊沸石化自然铜和碳酸盐化硫化物三个成矿体系;(3)地幔柱同构造盆地油气系统,巨量岩浆的快速成溢流导致地壳的快速沉降,形成同构造热盆地,具有油气前景;(4)地幔柱火山岩、硅质岩和富有机质砂页岩组合为优势生态体系提供了地质环境。  相似文献   

15.
碱性玄武岩形成的时限及其地质意义   总被引:2,自引:0,他引:2  
中国华北克拉通及邻区的早前寒武纪不存在碱性玄武岩。全球范围内碱性玄武岩的形成也存在时限性,它们在中新生代以来相对大量的出现。碱性玄武岩可划分为钾质碱性玄武岩和钠质碱性玄武岩两大类,后者还可作进一步划分。它们在同位素组成和元素组成上存在相互过渡的变化,这与地幔源区外来加入物质的种类和比例不同有关。高压和低程度熔融是所有碱性玄武岩形成的必要条件。研究表明,碱性玄武岩形成具时限性主要与地球热状态从热向冷的历史演化有关。碱性玄武岩的形成需要地幔俯冲作用,可达到相当深度的地幔俯冲作用只是到了太古宙以后才发生,并在中新生代以来达到高潮。  相似文献   

16.
http://www.sciencedirect.com/science/article/pii/S1674987111001125   总被引:1,自引:1,他引:0  
<正>Greenstone belts of the eastern Dharwar Craton,India are reinterpreted as composite tectonostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data.The former are dominated by a komatiile plus Mg-tholeiitic basalt volcanic association,with deep water siliciclastic and banded iron formation(BIF) sedimentary rocks.Plumes melted at90 km under thin rifted continental lithosphere to preserve inlraoceanic and continental margin aspects.Associated alkaline basalts record subduction-recycling of Mesoarchean oceanic crust,incubated in the asthenosphere.and erupted coevally with Mg basalts from a heterogeneous mantle plume.Together.komaliites-Mg basalts-alkaline basalts plot along the Phanerozoic mantle array in Th/Yb versus Nb/Yb coordinate space,representing zoned plumes,establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts eompositionally similar to recent intraoceanic arcs.As well,boninitic flows sourced in extremely depleted mantle are present,and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young(20 Ma),hot,oceanic lithosphere. Consequently.Cenozoic style "hot" subduction was operating in the Neoarchean.These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at~2.1 Ga,coevally with a global accretionary orogen at ~2.7 Ga,and associated orogenic gold mineralization. Archean lithospheric mantle,distinctive in being thick,refractory,and buoyant,formed complementary to the accreted plume and convergent margin terranes.as migrating arcs captured thick plumeplateaus. and the refractory,low density.residue of plume melting coupled with accreted imbricated plume-arc crust.  相似文献   

17.
Many continental flood basalts (CFB) have isotope and trace-element signatures that differ from those of oceanic basalts and much interest concerns the extent to which these reflect differences in their upper mantle source regions. A review of selected data sets from the Mesozoic and Tertiary CFB confirms significant differences in their major- and trace-element compositions compared with those of basalts erupted through oceanic lithosphere. In general, those CFB suites characterised by low Nb/La, high (87Sr/86Sr)i and low εNdi tend to exhibit relatively low TiO2, CaO/Al2O3, Na2O and/or Fe2O3, and relatively high SiO2. In contrast, those which have high Nb/La, low (87Sr/86Sr)i and high εNdi ratios, like the upper units in the Deccan Traps, have major- and trace-element compositions similar to oceanic basalts. It would appear that those CFB that have distinctive isotope and trace-element ratios also exhibit distinctive major-element contents, suggesting that major and trace elements have not been decoupled significantly during magma generation and differentiation.

When compared (at 8% MgO) with oceanic basalt trends, the displacement of many CFB to lower Na2O, Fe2O3*, TiO2 and CaO/Al2O3, but higher SiO2, at similar Mg#, is not readily explicable by crustal contamination. Rather, it reflects source composition and/or the effects of the melting processes. The model compositions of melts produced by decompression of mantle plumes beneath continental lithosphere have relatively low SiO2 and high Fe2O3*. In contrast, the available experimental data indicate that partial melts of peridotite have low TiO2, Na2O and Fe2O3*CaO/Al2O3, if the peridotite has been previously depleted by melt extraction. Moreover, melting of hydrated, depleted peridotite yields SiO2-rich, Fe2O3- and CaO-poor melts. Since anhydrous, depleted peridotite has a high-temperature solidus, it is argued that the source of these CFB was variably melt depleted and hydrated mantle, inferred to be within the lithosphere. Isotope data suggest these source regions were often old and relatively enriched in incompatible trace elements, and it is envisaged that H2O±CO2 were added at the same time as the incompatible elements. An implication is that a significant proportion of the new continental crust generated since the Permian reflected multistage processes involving mobilization of continental mantle lithosphere that was enriched in minor and trace elements during the Proterozoic.  相似文献   


18.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

19.
Cenozoic basaltic volcanism in southeastern China was related to the lithospheric extension and asthenospheric upwelling at the eastern Eurasian continental margin. The cenozoic basaltic rocks from this region can be grouped into three different series: tholeiitic basalts, alkali basalts, and picritic-nephelinitic basalts. Each basalt series has distinctive geochemical features and is not derived from a common source rock by different degrees of partial melting or from a common parental magma by fractional crystallization. The mineralogy, petrography, and major and trace-element geochemistry of the tholeiites are similar to oceanic island basalts, implying that the mantle source for these Chinese continental tholeiites was similar to that of the oceanic island basalts—an asthenospheric mantle. The alkali basalts and picritic-nephelinitic basalts are enriched in incompatible trace elements, and their geochemical features can be interpreted as a result of partial melting of an enriched lithospheric mantle, or the mixing products of an asthenospheric magma with a component derived from an enriched lithospheric mantle through thermal erosion at the base of the lithosphere. But the lack of a transitional rock type and continuous variational trends among these basalts suggests that the mixing between asthenospheric magmas and lithospheric magmas probably was not significant in the petrogenesis of the basalts from SE China. Low-degree partial melting of enriched lithospheric mantle alone can account for the observed geochemical data from these basalts.  相似文献   

20.
Hetu C. Sheth   《Gondwana Research》2005,8(2):109-127
Deep mantle plumes supposedly incorporate deeply subducted eclogitized oceanic crust, and continental flood basalts (CFBs) are now thought by some to be derived from such eclogite-bearing peridotite plumes. Eclogite-peridotite mixtures have much lower solidi (and produce much greater melt fractions for a given temperature) than peridotite. Fe-rich (eclogite- or pyroxenite-bearing) sources have been inferred for many CFBs. However, plumes with considerable amounts of eclogite should have difficulty in upwelling owing to the high density of eclogite. Besides, CFBs are always located along pre-existing lithospheric structures (suture zones, edges of thick cratons) and commonly associated with lithospheric rifting and continental breakup. India's major late Mesozoic CFB, the Deccan Traps, erupted through rift zones and a new continental margin that had developed along ancient suture zones traversing the subcontinent. Many Deccan basalts are too Fe-rich to have been in equilibrium with a peridotite mantle source, and have commonly been considered to be significantly fractionated derivatives of picritic liquids. However, it is possible to view them as relatively less evolved liquids derived from a source with extra fertility (i.e., an Fe-rich source). A new non-plume, plate tectonic model for Icelandic hotspot volcanism involves melting of a shallowly recycled slab of eclogitized Iapetus oceanic crust formerly trapped along the Caledonian suture. The model explains the geochemical-petrological characteristics of Icelandic basalts, and is consistent with passive upper mantle upwelling under Iceland inferred from recent seismic tomography. Based on the petrological and geochemical features of the Deccan flood basalts of the type section, in the Western Ghats, I propose that old, eclogitized oceanic crust trapped in the ancient Indian suture zones could have produced voluminous basaltic melts during the Deccan event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号