首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological studies initially considered the impact of total solid particles on human health, but according to the acquired knowledge about the worse effect of smaller particles, those studies turned to consider the impact of PM10. However, for the last decade PM2.5 began to be more important, once as they are smaller they can penetrate deeper in the lungs, being possible their trapping in alveoli and worse effects on human health. Therefore, more information on PM2.5 should be provided namely concerning the levels and elemental composition. Considering the relevance of traffic on the emission of particles of small sizes, this work included the detailed characterization of PM10 and PM2.5, sampled at two sites directly influenced by traffic, as well as at two reference sites, aiming a further evaluation of the influence of PM10 and PM2.5 on public health. The specific objectives were to study the influence of traffic emission on PM10 and PM2.5 characteristics, considering concentration, size distribution and elemental composition. PM10 and PM2.5 samples were collected using low-volume samplers; the element analyses were performed by particle induced X-ray emission (PIXE). At the sites influenced by traffic emissions PM10 and PM2.5 concentrations were 7–9 and 6–7 times higher than at the background sites. The presence of 17 elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb) was determined in both PM fractions; particle metal contents were 3–44 and 3–27 times higher for PM10 and PM2.5, respectively, than at the backgrounds sites. The elements originated mostly from anthropogenic activities (S, K, V, Mn, Ni, Zn and Pb) were predominantly present in PM2.5, while the elements mostly originated from crust (Mg, Al, Si and Ca) predominantly occurred in PM2.5–10. The results also showed that in coastal areas sea salt spray is an important source of particles, influencing PM concentration and distributions (PM10 increased by 46%, PM2.5/PM10 decreased by 26%), as well as PM compositions (Cl in PM10 was 11 times higher).  相似文献   

2.
In urban areas traffic is the major contributor to atmospheric particulate matter and exposure to these particles currently represents a serious risk to human health. The attention has been recently focused more on the particles of smaller sizes (PM2.5) which penetrate deeper in respiratory system causing severe health effects. Therefore, more information on PM2.5 should be provided, namely concerning morphological and chemical characterization. Aiming further evaluation of the impact of traffic emissions on public health, this work evaluated the influence of traffic on the chemical and morphological characteristics of PM10 and PM2.5, collected at one site influenced by traffic emissions and at one reference site. Chemical and morphological characteristics of 1,000 individual particles were determined by scanning electron microscopy combined with energy dispersive spectrometer (SEM–EDS). Cluster analysis (CA) was used to identify different types of particles that occurred in PM, aiming the identification of the respective emission sources. Traffic PM2.5 were dominated by particles composed of Fe oxides and alloys (67%) which were related to traffic emissions (this percentage was 3.7 times higher than at the background site); in PM2.5–10 the abundance of Fe oxides and alloys were 20% and 0% for the traffic and background sites, respectively. Background PM2.5 were mainly constituted by aluminum silicates (63%) related to natural sources (this percentage was 2.5 times higher than at the traffic site); the abundances of aluminum silicates in PM2.5–10 were 74% and 73% for traffic and background sites, respectively. It was concluded that traffic emissions were mainly present in PM2.5 (the percentage of particles associated to these emissions was 3.4 times higher than in PM2.5–10), while coarse particles were dominated by material of natural origin (the percentage of particles associated was 1.2 and 3.0 times higher than in PM2.5 for traffic and background sites, respectively). Previous results obtained by proton induced X-ray emission (PIXE) were consistent with SEM–EDS analysis that showed to be very useful to complement elemental analysis of different PM2.5 and PM2.5–10.  相似文献   

3.
This paper deals with the atmospheric concentrations of PM5 and PM2.5 particulate matter and its water soluble constituents along with the size distribution of ions and spatial variation at three different residential environments in a semiarid region in India. Samples were collected from the indoors and outdoors of urban, rural and roadside sites of Agra during October 2007–March 2008. The mean concentrations of PM2.5 indoors and outdoors were 178 μgm−3 and 195 μgm−3 while the mean concentrations of PM5 indoors and outdoors were 231.8 μgm−3 and 265.2 μgm−3 respectively. Out of the total aerosol mass, water soluble constituents contributed an average of 80% (33% anions, 50% cations) in PM5 and 70% (29% anions, 43% cations) in PM2.5. The indoor–outdoor ratio of water soluble components suggested additional aerosol indoor sources at rural and roadside sites. Indoor–outdoor correlations were also determined which show poor relationships among concentrations of aerosol ions at all three sites. Univariate Pearson correlation coefficients among water soluble aerosols were determined to evaluate the relationship between aerosol ions in indoor and outdoor air.  相似文献   

4.
The insular suburban site of Castillo de Bellver was selected for the study of the variability of PM levels and composition in the Western Mediterranean Basin (WMB).Mean annual (in 2004) PM10 and PM2.5 levels at this site were 29 and 20 µg/m3, respectively. These levels may be regarded as relatively low when compared with other suburban insular locations in the Eastern Mediterranean Basin (EMB), but they are higher than those recorded at most of the European suburban sites, especially in Northern and Western Europe. Seasonal variability of PM levels at this site is governed by meteorology rather than local emissions, whereas the daily cycles are clearly defined by the anthropogenic emissions, mainly coming from the urban area of Palma de Mallorca and the harbour area of the same city.Concerning the aerosol composition at this site, the main PM constituent is the mineral matter (29% in PM10 and 16 % in PM2.5), more than 50% (in PM10) being attributable to African dust. The amount of secondary inorganic aerosols is also very high (27% in PM10 and 34% in PM2.5), with the predominance of fine ammonium sulphate, and in a less proportion fine ammonium nitrate (in winter) and coarse Ca and Na nitrate (with higher importance in summer). The carbonaceous particles, dominantly fine, account for 17% of PM10 and 25% of PM2.5. The elemental carbon/organic carbon (EC/OC) ratio reached a mean value of 0.17, similar to those observed at regional background sites in the WMB coast of Spain. The sea spray aerosols (mainly coarse) represented around 10% of PM10, and only 4% in PM2.5. Finally, the unaccounted fraction increased from 15% to 20% in PM2.5, being mostly attributed to water.The concentrations of trace elements in PM10 and PM2.5 were usually in the range to those observed in regional background sites in the Iberian Peninsula, with the exception of the typical tracers of road traffic such as Cu, Sb, Zn, Sn and Ba, which presented concentrations in the range of urban sites of Iberia. Other elements such as Cr, Zr, Hf and Co have been identified as the main tracers of the harbour contributions.  相似文献   

5.
This paper provides performance evaluation of the EMEP (Cooperative Programme for the Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) model, formulated in [1], and presents model calculation results. A satisfactory agreement is found between calculated and observed PM10 and PM2.5 concentrations (i.e., particulate matter with diameters smaller than 10 and 2.5 μm) and their chemical composition for different parts of Europe for the years 2001–2004. The model manages to reproduce observed regional gradients of background PM10 and PM2.5, with spatial correlations being 0.70 and 0.80, respectively, while the temporal correlation coefficients between modeled and measured daily PM vary mostly between 0.4 and 0.8 at EMEP sites. The agreement between calculated and observed aerosol number concentrations is worse than for mass concentrations. Model calculated PM10 and PM2.5 concentrations and chemical composition in Europe for the year 2004 are presented, as well as their interannual variations in the period 2000–2004. Further, contributions of different sources to PM10 and PM2.5 are estimated. Model results show that in 2004, background PM10 and PM2.5 exceeded EU critical levels and WHO recommended guidelines in a number of European regions. They also show that the transboundary transport contributes considerably to PM pollution in the European countries.  相似文献   

6.
The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified in short- and medium-range clusters, thus transportation of particulates along with slow moving air masses was identified. A finding that supports the assumption of long-range transport is that, at background stations, long-range transportation effects were stronger, in comparison to traffic stations, due to less local particle emissions. Short-range trajectories associated to PM transport in Stockholm, Copenhagen and Hamburg were mainly of a continental origin. All three cities were approached by slow moving air masses originated from Poland and the Czech Republic, whereas Copenhagen and Stockholm were also influenced by short-range trajectories from Germany and France and from Jutland Peninsula and Scandinavian Peninsula, respectively. London and Paris are located to the north-west part of Europe. Trajectories of short and medium length arrived to these two megacities mainly through France, Germany, UK and North Atlantic.  相似文献   

7.
The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002–2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM10, PM2.5 and PM1 levels at MSY during 2002–2007 were 16, 14 and 11 µg/m3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM2.5 and PM10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.  相似文献   

8.
A study has been carried out on water soluble ions, trace elements, as well as PM2.5 and PM2.5–10 elemental and organic carbon samples collected daily from Central Taiwan over a one year period in 2005. A source apportionment study was performed, employing a Gaussian trajectory transfer coefficient model (GTx) to the results from 141 sets of PM2.5 and PM2.5–10 samples. Two different types of PM10 episodes, local pollution (LOP) and Asian dust storm (ADS) were observed in this study. The results revealed that relative high concentrations of secondary aerosols (NO3, SO42− and NH4+) and the elements Cu, Zn, Cd, Pb and As were observed in PM2.5 during LOP periods. However, sea salt species (Na+ and Cl) and crustal elements (e.g., Al, Fe, Mg, K, Ca and Ti) of PM2.5–10 showed a sharp increase during ADS periods. Anthropogenic source metals, Cu, Zn, Cd, Pb and As, as well as coarse nitrate also increased with ADS episodes. Moreover, reconstruction of aerosol compositions revealed that soil of PM2.5–10 elevated approximately 12–14% in ADS periods than LOP and Clear periods. A significantly high ratio of non-sea salt sulfate to elemental carbon (NSS-SO42−/EC) of PM2.5–10 during ADS periods was associated with higher concentrations of non-sea-salt sulfates from the industrial regions of China. Source apportionment analysis showed that 39% of PM10, 25% of PM2.5, 50% of PM2.5–10, 42% of sulfate and 30% of nitrate were attributable to the long range transport during ADS periods, respectively.  相似文献   

9.
Shanghai is the largest industrial and commercial city in China, and its air quality has been deteriorating for several decades. However, there are scarce researches on the level and seasonal variation of fine particle (PM2.5) as well as the carbonaceous fractions when compared with other cities in China and around the world. In the present paper, abundance and seasonal characteristics of PM2.5, organic carbon (OC) and elemental carbon (EC) were studied at urban and suburban sites in Shanghai during four season-representative months in 2005–2006 year. PM2.5 samples were collected with high-vol samplers and analyzed for OC and EC using thermal-optical transmittance (TOT) protocol. Results showed that the annual average PM2.5 concentrations were 90.3–95.5 μg/m3 at both sites, while OC and EC were 14.7–17.4 μg/m3 and 2.8–3.0 μg/m3, respectively, with the OC/EC ratios of 5.0–5.6. The carbonaceous levels ranked by the order of Beijing > Guangzhou > Shanghai > Hong Kong. The carbonaceous aerosol accounted for  30% of the PM2.5 mass. On seasonal average, the highest OC and EC levels occurred during fall, and they were higher than the values in summer by a factor of 2. Strong correlations (r = 0.79–0.93) between OC and EC were found in the four seasons. Average level of secondary organic carbon (SOC) was 5.7–7.2 μg/m3, accounting for  30% of the total OC. Strong seasonal variation was observed for SOC with the highest value during fall, which was about two times the annual average.  相似文献   

10.
Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station’s background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003–2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations, the results were weaker in Marseille and particularly in Rome, probably due to their greater distance from Northwest Africa, in comparison to Madrid and Lisbon. Dust intrusions from the Sahara desert and transportation of Mediterranean/Atlantic sea spray, were characterized as primary regional sources of exogenous PM10 in all four cities. Continental trajectories from the industrialized northern Italy affected PM10 levels particularly in Marseille and Rome, due to their more eastern geographical position.  相似文献   

11.
The new European Council Directive (PE-CONS 3696/07) frames the inhalable (PM10) and fine particles (PM2.5) on priority to chemically characterize these fractions in order to understand their possible relation with health effects. Considering this, PM2.5 was collected during four different seasons to evaluate the relative abundance of bulk elements (Cl, S, Si, Al, Br, Cu, Fe, Ti, Ca, K, Pb, Zn, Ni, Mn, Cr and V) and water soluble ions (F, Cl, NO2 , NO3 , SO4 2−, Na+, NH4 +, Ca2+ and Mg2+) over Menen, a Belgian city near the French border. The air quality over Menen is influenced by industrialized regions on both sides of the border. The most abundant ionic species were NO3 , SO4 2− and NH4 +, and they showed distinct seasonal variation. The elevated levels of NO3 during spring and summer were found to be related to the larger availability of the NOx precursor. The various elemental species analyzed were distinguished into crustal and anthropogenic source categories. The dominating elements were S and Cl in the PM2.5 particles. The anthropogenic fraction (e.g. Zn, Pb, and Cu) shows a more scattered abundance. Furthermore, the ions and elemental data were also processed using principal component analysis and cluster analysis to identify their sources and chemistry. These approach identifies anthropogenic (traffic and industrial) emissions as a major source for fine particles. The variations in the natural/anthropogenic fractions of PM2.5 were also found to be a function of meteorological conditions as well as of long-range transport of air masses from the industrialized regions of the continent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.

The seasonal variation of particulate matter and its relationship with meteorological parameters were measured at five different residential sites in Delhi. Sampling was carried out for one year including all three seasons (summer, monsoon, and winter). The yearly average concentration of particulate matter (PM2.5) was 135.16 ± 41.34 µg/m3. The highest average values were observed in winter (208.44 ± 43.67 µg/m3) and the lowest during monsoon season (80.29 ± 39.47 µg/m3). The annual average concentration of PM2.5 was found to be the highest at the Mukherjee Nagar site (242.16 µg/m3 ) during the winter and lowest at (Jawaharlal Nehru University) JNU (35.65 µg/m3) during the monsoon season. The strongest correlation between PM mass and a meteorological parameter was a strong negative correlation with temperature (R2=0.55). All other parameters were weakly correlated (R2<0.2) with PM mass.

  相似文献   

13.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

14.
Air circulation due to the urban heat island (UHI) effect can influence the dispersion of air pollutants in a metropolis. This study focusses on the influence of the UHI effect on particulate matter (PM; including PM2.5 and PM2.5–10) between May and September 2010–2012 in the Taipei basin. Meteorological and PM data were obtained from the sites, owned by the governmental authorities. The analysis was carried out using t test, relative indices (RIs), Pearson product–moment correlation and stepwise regression. The results show that the RI values for PM were the highest at moderate UHI intensity (MUI; 2 °C ≤ UHI < 4 °C) rather than at strong UHI intensity (SUI; 4 °C ≤ UHI) during the peak time for anthropogenic emissions (20:00 LST). Neither the accumulation of PM nor the surface convergence occurred in the hot centre, as shown by the case study. At MUI, more than 89 % of the synoptic weather patterns showed that the weather was clear and hot or that the atmosphere was stable. The variation in PM was associated with horizontal and vertical air dispersion. Poor horizontal air dispersion, with subsidence, caused an increase in PM at MUI. However, the updraft motion diluted the PM at SUI. The stepwise regression models show that the cloud index and surface air pressure determined the variation in PM2.5–10, while cloud index, wind speed and mixing height influenced the variation in PM2.5. In conclusion, a direct relationship between UHI effect and PM was not obvious.  相似文献   

15.
气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用“国际大气化学—气候模式比较计划”(Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP)中4个模式的试验数据分析了RCP8.5情景下2000~2100年气候变化对中国气溶胶浓度的影响。结果显示,在人为气溶胶排放固定在2000年、仅考虑气候变化的影响时,2000~2100年气候变化导致中国北部地区(31°N~45°N, 105°E~122°E)硫酸盐、有机碳和黑碳气溶胶分别增加28%、21%和9%,硝酸盐气溶胶在中国东部地区减少30%。气候变化对细颗粒物(PM2.5)浓度的影响有显著的季节变化特征,冬季PM2.5浓度在中国东部减少15%,这主要是由硝酸盐气溶胶在冬季的显著减少造成的;夏季PM2.5浓度在中国北部地区增加16%,而长江以南地区减少为9%,这可能与模式模拟的未来东亚夏季风环流的增强有关。  相似文献   

16.
Surface solar radiation (SSR) can affect climate, the hydrological cycle, plant photosynthesis, and solar power. The values of solar radiation at the surface reflect the influence of human activity on radiative climate and environmental effects, so it is a key parameter in the evaluation of climate change and air pollution due to anthropogenic disturbances. This study presents the characteristics of the SSR variation in Nanjing, China, from March 2016 to June 2017, using a combined set of pyranometer and pyrheliometer observations. The SSR seasonal variation and statistical properties are investigated and characterized under different air pollution levels and visibilities. We discuss seasonal variations in visibility, air quality index (AQI), particulate matter (PM10 and PM2.5), and their correlations with SSR. The scattering of solar radiation by particulate matter varies significantly with particle size. Compared with the particulate matter with aerodynamic diameter between 2.5 μm and 10 μm (PM2.5?10), we found that the PM2.5 dominates the variation of scattered radiation due to the differences of single-scattering albedo and phase function. Because of the correlation between PM2.5 and SSR, it is an effective and direct method to estimate PM2.5 by the value of SSR, or vice versa to obtain the SSR by the value of PM2.5. Under clear-sky conditions (clearness index ≥0.5), the visibility is negatively correlated with the diffuse fraction, AQI, PM10, and PM2.5, and their correlation coefficients are ?0.50, ?0.60, ?0.76, and ?0.92, respectively. The results indicate the linkage between scattered radiation and air quality through the value of visibility.  相似文献   

17.
The concentrations of PM10, PM2.5 and their water-soluble ionic species were determined for the samples collected during January to December, 2007 at New Delhi (28.63° N, 77.18° E), India. The annual mean PM10 and PM2.5 concentrations (± standard deviation) were about 219 (± 84) and 97 (±56) μgm−3 respectively, about twice the prescribed Indian National Ambient Air Quality Standards values. The monthly average ratio of PM2.5/PM10 varied between 0.18 (June) and 0.86 (February) with an annual mean of ∼0.48 (±0.2), suggesting the dominance of coarser in summer and fine size particles in winter. The difference between the concentrations of PM10 and PM2.5, is deemed as the contribution of the coarse fraction (PM10−2.5). The analyzed coarse fractions mainly composed of secondary inorganic aerosols species (16.0 μgm−3, 13.07%), mineral matter (12.32 μgm−3, 10.06%) and salt particles (4.92 μgm−3, 4.02%). PM2.5 are mainly made up of undetermined fractions (39.46 μgm−3, 40.9%), secondary inorganic aerosols (26.15 μgm−3, 27.1%), salt aerosols (22.48 μgm−3, 23.3%) and mineral matter (8.41 μgm−3, 8.7%). The black carbon aerosols concentrations measured at a nearby (∼300 m) location to aerosol sampling site, registered an annual mean of ∼14 (±12) μgm−3, which is significantly large compared to those observed at other locations in India. The source identifications are made for the ionic species in PM10 and PM2.5. The results are discussed by way of correlations and factor analyses. The significant correlations of Cl, SO42−, K+, Na+, Ca2+, NO3 and Mg2+ with PM2.5 on one hand and Mg2+ with PM10 on the other suggest the dominance of anthropogenic and soil origin aerosols in Delhi.  相似文献   

18.
To investigate the interannual variations of particulate matter (PM) pollution in winter, this paper examines the pollution characteristics of PM with aerodynamic diameters of less than 2.5 and 10 μm (i.e., PM2.5 and PM10), and their relationship to meteorological conditions over the Beijing municipality, Tianjin municipality, and Hebei Province—an area called Jing–Jin–Ji (JJJ, hereinafter)—in December 2013–16. The meteorological conditions during this period are also analyzed. The regional average concentrations of PM2.5 (PM10) over the JJJ area during this period were 148.6 (236.4), 100.1 (166.4), 140.5 (204.5), and 141.7 (203.1) μg m–3, respectively. The high occurrence frequencies of cold air outbreaks, a strong Siberian high, high wind speeds and boundary layer height, and low temperature and relative humidity, were direct meteorological causes of the low PM concentration in December 2014. A combined analysis of PM pollution and meteorological conditions implied that control measures have resulted in an effective improvement in air quality. Using the same emissions inventory in December 2013–16, a modeling analysis showed emissions of PM2.5 to decrease by 12.7%, 8.6%, and 8.3% in December 2014, 2015, and 2016, respectively, each compared with the previous year, over the JJJ area.  相似文献   

19.
为了解成都市PM2.5污染特征及其与地面气象要素的关系,利用环境空气质量监测资料和地面气象观测资料,分析了PM2.5质量浓度的季节、月和日变化特征,并分不同空气质量等级分析空气质量与地面气象要素的关系。结果表明:PM2.5质量浓度具有明显的季节、月和日变化特征,且成都市区6个监测站的变化趋势比较一致;成都市相对湿度较大,地面风速较小,约62%的样本分布在相对湿度80%~100%,约85%的样本分布在地面风速0~2 m·s-1,地面风速对成都市PM2.5的水平输送、扩散、稀释不利;降水对PM2.5的清除量随PM2.5初始浓度、降雨持续时间和累积降雨量增加而增大。  相似文献   

20.
刘馨尹  张宁 《气象科学》2021,41(3):304-313
利用2015—2016年全国PM_(2.5)质量浓度站点资料及CCMP(Cross Calibrated Multi-Platform)风场再分析资料,对中国华北、长三角、珠三角以及四川盆地主要城市在PM_(2.5)污染下的近地面风场及其影响进行统计分析。结果表明:(1)近地面风速与PM_(2.5)质量浓度表现为负相关,低风速有利于PM_(2.5)的积累,但是该相关关系并不完全显著,体现出"冬强夏弱"的季节性差异;(2)不同地区PM_(2.5)质量浓度对不同风向的反应不同,华北地区在偏南风主导下PM_(2.5)质量浓度较高,长三角则是在偏西风主导下PM_(2.5)质量浓度较高,而珠三角地区冬季PM_(2.5)质量浓度较高,主导风向为偏北风;(3)通过分析地面散度场发现不同地区主导的污染类型不同,华北地区、长三角以及珠三角污染类型主要为区域性污染,四川盆地主要为局地型污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号