首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
FY-3卫星上搭载的紫外臭氧总量探测仪(Total Ozone Unit,TOU)是我国首台自主研制的用于全球臭氧总量监测的仪器,自2008年5月至今已有3台仪器搭载在气象卫星(FY-3A/FY-3B/FY-3C)上成功发射并在轨运行。TOU利用紫外波段进行臭氧总量反演,以获得全球臭氧的分布及其变化。2013年,针对我国灰霾、沙尘等气溶胶污染事件频发的环境问题,TOU紫外探测数据被成功用于吸收性气溶胶指数(AAI)的反演,之后TOU被用于我国吸收性气溶胶污染事件的监测,为沙尘、灰霾等的预报提供监测数据。对TOU的数据和产品的质量和应用进行了介绍,包括L1B数据、臭氧总量产品及AAI指数。在此基础上,根据现有仪器的不足,对后续仪器的发展方向进行了阐述。  相似文献   

2.
以江苏省及周边39个常规气象站点1957—2001年的月平均气温数据和90 m空间分辨率的DEM数据为基础,采用基于DEM的多元线性回归插值方法,分析多年平均气温与海拔、坡度和坡向等地形因子的相关关系,建立适合该区域的多元回归空间插值模型.同时与反距离权重法(IDW)和克里格(Kriging)插值法等传统方法的计算结果进行对比,并用交叉验证方法比较5种插值方法的精度.结果表明:该研究区各月气温递减率在 0.5~0.9 ℃/(100 m) 左右;基于DEM的多元线性回归空间插值方法(MLR)无论从插值效果还是误差精度上,均优于其他传统插值方法.插值结果客观地表达了气温与各地形要素的相关性,反映了气温的空间变异性.  相似文献   

3.
刘寅 《大气科学》2014,38(6):1066-1078
我国第二代极轨气象卫星“风云三号”A星(FY-3A)上搭载的紫外臭氧总量探测仪(Total Ozone Unit,TOU)每天可以提供一次覆盖全球的臭氧总量观测。为了在数值预报中应用TOU的臭氧资料,从资料同化角度发展了一套质量控制方案。首先基于臭氧总量和平均位势涡度的高相关性建立了逐日动态更新的臭氧线性回归预报模型,然后使用双权重算法对臭氧资料进行质量控制。将该质量控制方案应用于台风Tembin(2012)和Isaac(2012)个例,试验结果说明该方案可以体现出臭氧总量和平均位势涡度之间相关关系的逐日变化,识别出的离群资料百分比随时间变化较稳定,可以保留原始资料的主体信息,并且显著降低了原始资料的标准差。同时,质量控制后的臭氧数据与统计拟合量更加一致,观测减拟合的概率密度函数分布形式也更接近高斯分布,有利于后续的资料同化。  相似文献   

4.
为研究新疆地区气温的空间变异性,以新疆66个国家气象台站1981—2010年月平均气温和30 m空间分辨率DEM数据为基础,采用传统插值法、基于DEM多元线性回归插值和基于DEM修正的空间插值方法对新疆区域气温数据进行栅格化,并分析年平均气温与海拔的相关关系。通过采用反距离权重法(IDW),普通克里格法(Kriging),样条函数法(Spline)和趋势面分析法(Trend)4种空间插值方法对气象要素进行直接插值、气温多元回归模型残差结果插值、基于DEM修正插值对比分析。通过针对插值方法进行基于MAE和RMSIE的交叉验证,结果表明传统插值方法、基于多元线性回归和基于DEM修正4种空间插值精度均为IDWKrigingSplineTrend。反距离权重(IDW)空间插值方法最优,基于DEM修正IDW插值、基于多元线性回归IDW插值与传统IDW插值精度分别是0.039、0.477、1.038,插值结果客观的表达了新疆区域气温随空间梯度的变化趋势。  相似文献   

5.
用GMS卫星资料研究我国东南部夏季短波云辐射强迫   总被引:2,自引:0,他引:2  
利用中分辨率辐射计算模式(MODTRAN3)、站点的温压湿探空资料和美国标准大气的气溶胶、臭氧和微量气体参数,计算出无云情况下的地面总辐射,再与实测地面总辐射结合得出云对太阳的辐射强迫。同时利用GMS卫星资料反演出云辐射参数——反照率和亮温,分析了短波云辐射强迫和云辐射参数的关系,建立了两者的回归模式,用于估算地面资料缺少地区的短波云辐射强迫。  相似文献   

6.
利用空间分辨率为5km的广西智能网格降雨量预报产品以及桂南区域自动气象站降雨量实况资料,采用最邻近点法、双线性插值、双三次插值和统计降尺度方法,研究和评估空间分辨率在1km的格点降雨量插值预报释用技术。结果表明:(1)对于分辨率较高的智能网格预报产品,最邻近点法、双线性插值和双三次插值的预报效果无明显差异,其中最邻近点法的ETS评分和预报偏差略好于其它两种方法;(2)采用一元线性回归的统计降尺度方法比其它3种方法的降水预报能力高,并可以提高强降水的预报评分,对构造更高分辨率的网格预报产品具有一定参考作用。  相似文献   

7.
基于RS和GIS技术的新疆气温空间插值方法探讨   总被引:4,自引:0,他引:4  
分析新疆90个气象站点2004年年均气温与经纬度、海拔高度的关系,之间具有较好的线形相关关系(r2=0.897)。通过"回归方程计算 空间残差"的方法对全疆2004年年均气温数据进行插值。验证结果为:插值计算值与实测值间相关系数r2=0.994,平均误差1.53%。插值结果表明:利用"回归方程计算 空间残差"的方法可以生成高精度、高空间分辨率新疆年平均网格温度结果。  相似文献   

8.
通过FY-3B TOU与Aura OMI卫星臭氧总量产品的比对分析,检验FY-3B TOU臭氧总量产品的适用性。结果显示,两者的相对偏差(RD)在赤道、南北半球中纬度大部分地区为2%~4%,而在南北极区扩到4%~6%和8%~10%,从赤道到两极RD随纬度升高而增大;除南北极区外,其余地区RD月平均值均呈现出明显的季节变化特征,尤其南半球中纬度地区的季节特征更为显著;赤道地区RD值随卫星臭氧总量的变化波动较小,基本稳定在0.1%~2.9%,其余地区仅卫星臭氧总量在230~500DU之间时,RD才出现相对稳定的波动,可见除赤道地区外RD在不同区域对卫星臭氧总量值有一定程度的依赖性;南北极区太阳天顶角(SZA)在45°~65°期间,RD随SZA增大均呈正的下降趋势,在70°~80°之间均呈现小幅度的回升,总体来看,TOU臭氧总量RD值受SZA变化情况并不明显。  相似文献   

9.
《气象》2021,(6)
利用四川省158个气象站2016—2019年逐小时2 m气温、相对湿度、地面气压、能见度等观测数据,通过SMARTS模式计算并积分得到逐月晴天太阳总辐射,建立晴天太阳总辐射随海拔高度的变化关系,将该关系应用到1990—2019年太阳总辐射空间插值订正中,并对订正效果进行验证,结果表明:晴天太阳总辐射随海拔高度呈对数增加,海拔越高晴天太阳总辐射随高度增幅越小;辐射订正方面,海拔较低、地势平坦的四川盆地地区订正幅度最小,高海拔的川西高原订正幅度居中,高低海拔过渡地带订正幅度最大;交叉验证结果表明,用来验证的7个辐射站年平均绝对误差由182.77 kW·h·m~(-2)减少到145.48 kW·h·m~(-2),相对误差由13.41%减少到10.24%,冬半年订正效果好于夏半年。通过订正可有效提高复杂地形下太阳总辐射插值效果,减小插值误差。  相似文献   

10.
以四川省为例开展复杂地形下气温插值方法的研究,结合遥感数据、DEM数据与气象站点数据,基于符号回归分别构建多因子气温插值模型、少因子气温插值模型,并与多元线性回归模型和传统插值方法(反距离权重法、普通克里金法、协同克里金法)进行对比。结果表明:基于符号回归的两种模型与多元线性回归模型在四季插值精度均显著优于传统插值方法,其中多因子气温插值模型在四季精度皆为最高;评估基于符号回归的两种模型与多元线性回归模型在简单与复杂地形区域下的气温插值精度,多元线性回归模型在夏季整体精度最差,少因子气温插值模型在冬季的复杂地形区域插值精度最低,而多因子气温插值模型在两种地形区域的全年插值精度皆最优;多因子气温插值模型的气温空间分布特征与遥感气温产品最相近,整体误差较小,可精准反映气温空间分布特征。基于符号回归的多因子气温插值模型可以提升复杂地形区域气温插值精度。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号