首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The offshore and coastal geomorphology of southwest Greenland records evidence for the advance and decay of the Greenland Ice Sheet during the Last Glacial Maximum. Regional ice flow patterns in the vicinity of Sisimiut show an enlarged ice sheet that extended southwestwards on to the shelf, with an ice stream centred over Holsteinsborg dyb. High level periglacial terrain composed of blockfield and tors is dated to between 101 and 142 ka using 26Al and 10Be cosmogenic exposure ages. These limit the maximum surface elevation of the Last Glacial Maximum ice sheet in this part of southwest Greenland to ca 750–810 m asl, and demonstrate that terrain above this level has been ice free since MIS 6. Last Glacial Maximum ice thickness on the coast of ca 700 m implies that the ice sheet reached the mid to outer continental shelf edge to form the Outer Hellefisk moraines. Exposure dates record ice surface thinning from 21.0 to 9.8 ka, with downwasting rates varying from 0.06 to 0.12 m yr−1. This reflects strong surface ablation associated with increased air temperatures running up to the Bølling Interstadial (GIS1e) at ca 14 ka, and later marine calving under high sea levels. The relatively late retreat of the Itilleq ice stream inland of the present coastline is similar to the pattern observed at Jakobshavn Isbræ, located 250 km north in Disko Bugt, which also retreated from the continental shelf after ca 10 ka. We hypothesise that the ice streams of West Greenland persisted on the inner shelf until the early Holocene because of their considerable ice thickness and greater ice discharge compared with the adjacent ice sheet.  相似文献   

2.
This study investigates the marginal subglacial bedrock bedforms of Jakobshavns Isbrae, West Greenland, in order to examine the processes governing bedform evolution in ice stream and ice sheet areas, and to reconstruct the interplay between ice stream and ice sheet dynamics. Differences in bedform morphology (roche moutonnee or whaleback) are used to explore contrasts in basal conditions between fast and slow ice flow. Bedform density is higher in ice stream areas and whalebacks are common. We interpret that this is related to higher ice velocities and thicker ice which suppress bed separation. However, modification of whalebacks by plucking occurs during deglaciation due to ice thinning, flow deceleration, crevassing and fluctuations in basal water pressure. The bedform evidence points to widespread basal sliding during past advances of Jakobshavns Isbrae. This was encouraged by increased basal temperatures and melting at depth, as well as the steep marginal gradients of Jakobshavns Isfjord which allowed rapid downslope evacuation of meltwater leading to strong ice/bedrock coupling and scouring. In contrast to soft-bedded ice stream bedforms, the occurrence of fixed basal perturbations and higher bed roughness in rigid bed settings prevents the basal ice subsole from maintaining a stable form which, coupled with secondary plucking, counteracts the development of bedforms with high elongation ratios. Cross-cutting striae and double-plucked, rectilinear bedforms suggest that Jakobshavns Isbrae became partially unconfined during growth phases, causing localised diffluent flow and changes in ice sheet dynamics around Disko Bugt. It is likely that Disko Bugt harboured a convergent ice flow system during repeated glacial cycles, resulting in the formation of a large coalesced ice stream which reached the continental shelf edge.  相似文献   

3.
New relative sea-level (RSL) data from Disko Bugt, a large marine embayment in West Greenland, are used to examine the deglacial history of the Jakobshavns Isbrae ice stream. RSL data show rapid deglaciation after 10.3 ka cal. yr BP. Once deglaciation began, a bedrock high in the west of the bay exerted no discernible influence on the deglacial chronology. Following initial rapid retreat, ice stream recession slowed as it approached the eastern shores of the bay. Seabed elevations increase here and the ice stream terminus lingered for several thousand years before retreating into the narrow bedrock-confined Jakobshavns Isfjord. The seabed topography of Disko Bugt includes several deep channels which probably record the former course of the ice stream. Using a simple water depth/calving velocity relationship it is estimated that the maximum calving velocity on deglaciation was c. 4.8 km a-1. This is less than the present rate (6–7 km a-1), although ice discharge was two to four times that observed today. Initiation of rapid ice stream retreat was probably caused by ice stream thinning and increased surface melting. A critical point in time was the retreat of the ice stream from shallow continental shelf waters ( c. 400 m) into the deep bedrock trough (>800 m) which marks the entrance to Disko Bugt.  相似文献   

4.
The now acknowledged thinning of the Greenland Ice Sheet raises concerns about its potential contribution to future sea level rise. In order to appreciate the full extent of its contribution to sea level rise, reconstruction of the ice sheet's most recent last deglaciation could provide key information on the timing and the height of the ice sheet at a time of rapid climate readjustment. We measured 10Be concentrations in 12 samples collected along longitudinal and altitudinal transects from Sisimiut to within 10 km of the Isunguata Sermia Glacier ice margin on the western coast of Greenland. Along the longitudinal transect, we collected three perched boulders and two bedrocks. In addition, we sampled seven perched boulders along a vertical transect in a valley within 10 km of the Isunguata Sermia Glacier ice margin. Our pilot dataset constrains the height of the ice sheet during the Last Glacial Maximum (LGM) between 500 m and 840 m (including the 120 m relative sea level depression at the time of the LGM, 21 ka BP). From the transect we estimate the thinning of the ice sheet at the end of the deglaciation between 12.3 ± 1.5 10Be ka (n = 2) and 8.3 ± 1.2 10Be ka (n = 3) to be ~6 cm a?1 over this time period. Direct dating of the retreat of the western margin of the Greenland Ice Sheet has the potential to better constrain the retreat rate of the ice margin, the thickness of the former ice sheet as well as its response to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper provides a new deglacial chronology for retreat of the Irish Ice Sheet from the continental shelf of western Ireland to the adjoining coastline, a region where the timing and drivers of ice recession have never been fully constrained. Previous work suggests maximum ice-sheet extent on the outer western continental shelf occurred at ~26–24 cal. ka BP with the initial retreat of the ice marked by the production of grounding-zone wedges between 23–21.1 cal. ka BP. However, the timing and rate of ice-sheet retreat from the inner continental shelf to the present coast are largely unknown. This paper reports 31 new terrestrial cosmogenic nuclide (TCN) ages from erratics and ice-moulded bedrock and three new optically stimulated luminescence (OSL) ages on deglacial outwash. The TCN data constrain deglaciation of the near coast (Aran Islands) to ~19.5–18.5 ka. This infers ice retreated rapidly from the mid-shelf after 21 ka, but the combined effects of bathymetric shallowing and pinning acted to stabilize the ice at the Aran Islands. However, marginal stability was short-lived, with multiple coastal sites along the Connemara/Galway coasts demonstrating ice recession under terrestrial conditions by 18.2–17. ka. This pattern of retreat continued as ice retreated eastward through inner Galway Bay by 16.5 ka. South of Galway, the Kilkee–Kilrush Moraine Complex and Scattery Island moraines point to late stage re-advances of the ice sheet into southern County Clare ~14.1–13.3 ka, but the large errors associated with the OSL ages make correlation with other regional re-advances difficult. It seems more likely that these moraines are the product of regional ice lobes adjusting to internal ice-sheet dynamics during deglaciation in the time window 17–16 ka.  相似文献   

6.
In West Greenland, early and mid Holocene relative sea level (RSL) fall was replaced by late Holocene RSL rise during the Neoglacial, after 4–3 cal. ka BP (thousand calibrated years before present). Here we present the results of an isolation basin RSL study completed near to the coastal town of Sisimiut, in central West Greenland. RSL fell from 14 m above sea level at 5.7 cal. ka BP to reach a lowstand of ?4.0 m at 2.3–1.2 cal. ka BP, before rising by an equivalent amount to present. Differences in the timing and magnitude of the RSL lowstand between this and other sites in West and South Greenland record the varied interplay of local and non‐Greenland RSL processes, notably the reloading of the Earth's crust caused by a Neoglacial expansion of the Greenland Ice Sheet (GIS) and the subsidence associated with the collapse of the Laurentide Ice Sheet forebulge. This means that the timing of the sea level lowstand cannot be used to infer directly when the GIS advanced during the Neoglacial. The rise in Late Holocene RSL is contrary to recently reported bedrock uplift in the Sisimiut area, based on repeat GPS surveys. This indicates that a belt of peripheral subsidence around the current ice sheet margin was more extensive in the late Holocene, and that there has been a switch from subsidence to uplift at some point in the last thousand years or so. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This paper examines marine geophysical and geological data, and new multibeam bathymetry data to describe the Pleistocene sediment and landform record of a large ice‐stream system that drained ~3% of the entire British?Irish Ice Sheet at its maximum extent. Starting on the outer continental shelf NW of Scotland we describe: the ice‐stream terminus environment and depocentre on the outer shelf and continental slope; sediment architecture and subglacial landforms on the mid‐shelf and in a large marine embayment (the Minch); moraines and grounding line features on the inner shelf and in the fjordic zone. We identify new soft‐bed (sediment) and hard‐bed (bedrock) subglacial landform assemblages in the central and inner parts of the Minch that confirm the spatial distribution, coherence and trajectory of a grounded fast‐flowing ice‐sheet corridor. These include strongly streamlined bedrock forms and megagrooves indicating a high degree of ice‐bed coupling in a zone of flow convergence associated with ice‐stream onset; and a downstream bedform evolution (short drumlins to km‐scale glacial lineations) suggesting an ice‐flow velocity transition associated with a bed substrate and roughness change in the ice‐stream trunk. Chronology is still lacking for the timing of ice‐stream demise; however, the seismic stratigraphy, absence of moraines or grounding‐line features, and presence of well‐preserved subglacial bedforms and iceberg scours, combined with the landward deepening bathymetry, all suggest that frontal retreat in the Minch was probably rapid, via widespread calving, before stabilization in the nearshore zone. Large moraine complexes recording a coherent, apparently long‐lived, ice‐sheet margin position only 5–15 km offshore strongly support this model. Reconstructed ice‐discharge values for the Minch ice stream (12–20 Gt a?1) are comparable to high mass‐flux ice streams today, underlining it as an excellent palaeo‐analogue for recent rapid change at the margins of the Greenland and West Antarctic Ice Sheets.  相似文献   

8.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The Sisimiut area was deglaciated in the early Holocene, c. 11 cal. ka BP. At that time the lowlands were inundated by the sea, but the isostatic rebound surpassed the global sea‐level rise, and the lowlands emerged from the sea. The pioneer vegetation in the area consisted of mosses and herbaceous plants. The oldest remains of woody plants (Empetrum nigrum) are dated to c. 10.3 cal. ka BP, and remains of Salix herbacea and Harrimanella hypnoides are found in slightly younger sediments. The maximum occurrence of statoblasts of the bryozoan Plumatella repens from c. 10 to 4.5 cal. ka BP probably reflects the Holocene thermal maximum, which is also indicated in geochemical proxies of the lake sediments. A maximum in organic matter accumulation in one of the three studied lakes c. 3 cal. ka BP can probably be ascribed to a late Holocene short‐duration temperature maximum or a period of increased aridity. Cenococcum geophilum sclerotia are common in the late Holocene, implying increased soil erosion during the Neoglaciation. A comparison with sediment and macrofossil records from inland shows similar Holocene trends and a similar immigration history. It also reveals that there has been a significant gradient throughout the Holocene, from an oceanic and stable climate at the outer coast to a more continental and unstable climate with warmer summers and drier conditions close to the margin of the Greenland ice sheet, where the buffer capacity of the sea is lower.  相似文献   

10.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   

11.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Digital elevation models of the area around the Solway Lowlands reveal complex subglacial bedform imprints relating the central sector of the LGM British and Irish Ice Sheet. Drumlin and lineation mapping in four case studies show that glacier flow directions switched significantly through time. These are summarised in four major flow phases in the region: Phase I flow was from a dominant Scottish dispersal centre, which transported Criffel granite erratics to the Eden Valley and forced Lake District ice eastwards over the Pennines at Stainmore; Phase II involved easterly flow of Lake District and Scottish ice through the Tyne Gap and Stainmore Gap with an ice divide located over the Solway Firth; Phase III was a dominant westerly flow from upland dispersal centres into the Solway lowlands and along the Solway Firth due to draw down of ice into the Irish Sea basin; Phase IV was characterised by unconstrained advance of Scottish ice across the Solway Firth. Forcing of a numerical model of ice sheet inception and decay by the Greenland ice core record facilitates an assessment of the potential for rapid ice flow directional switching during one glacial cycle. The model indicates that, after fluctuations of smaller radially flowing ice caps prior to 30 ka BP, the ice sheet grows to produce an elongate, triangular-shaped dome over NW England and SW Scotland at the LGM at 19.5 ka BP. Recession after 18.5 ka BP displays a complex pattern of significant ice flow directional switches over relatively short timescales, complementing the geomorphologically-based assessments of palaeo-ice dynamics. The palaeoglaciological implications of this combined geomorphic and modelling approach are that: (a) the central sector of the BIIS was as a major dispersal centre for only ca 2.5 ka after the LGM; (b) the ice sheet had no real steady state and comprised constantly migrating dispersal centres and ice divides; (c) subglacial streamlining of flow sets was completed over short phases of fast flow activity, with some flow reversals taking place in less than 300 years.  相似文献   

13.
Nioghalvfjerdsfjorden in North-East Greenland is at present covered by a floating glacier. Raised marine deposits in the surrounding area contain shells of marine molluscs, bones of marine mammals and pieces of driftwood. A fairly systematic sampling of such material has been conducted, followed by extensive radiocarbon dating. We suggest that the Greenland ice sheet extended onto the shelf offshore North-East Greenland during isotope stage 2, perhaps even reaching the shelf break. During the subsequent recession of the ice sheet, the entrance of Nioghalvfjerdsfjorden had become ice-free by 9.7 cal. ka BP. The recession culminated between 7.7 and 4.5 cal. ka BP, during which time the fjord was glacier-free along its entire 80 km length. No dates younger than 4.5 cal. ka BP are available on marine material from the fjord, and it seems probable that the fjord has been continuously covered by the floating glacier since this time. The maximum glaciation was attained around AD 1900, after which thinning and recession took place. The marine limit increases from c. 40 m above sea level near the present margin of the Inland Ice to c. 65 m above sea level at the outer coast. These figures fit into the regional pattern of the marine limit for areas both to the south and north. The marine fauna comprise two bivalves, Macoma calcarea and Serripes groenlandicus, that may represent a southern element present during the Holocene temperature optimum. Remains of three taxa of southern extralimital terrestrial and limnic plants were dated to 5.1 cal. ka BP, and remains of another extralimital plant were dated to 8.8 and 8.5 cal. ka BP. The known Holocene time ranges of the willow Salix arctica and the lemming Dicrostonyx torquatus have been extended back to 8.8 and 6.4 cal. ka BP, respectively, providing minimum dates for their immigration to Greenland.  相似文献   

14.
At the end of the Middle Weichselian (30–25 ka BP) a glacier advance from southern Norway, termed the Kattegat Ice Stream, covered northern Denmark, the Kattegat Sea floor and the Swedish West Coast during onset of the Last Glacial Maximum (LGM) at the southwest margin of the Scandinavian Ice Sheet. The lithostratigraphic unit deposited by the ice stream is the till of the Kattegat Formation (Kattegat till). Because morphological features have been erased by later glacial events, stratigraphic control and timing are decisive. The former ice stream is identified by the dispersal of Oslo indicator erratics from southern Norway and by glaciodynamic structures combined with glaciotectonic deformation of subtill sediments. Ice movement was generally from northerly directions and the flow pattern is fan-shaped in marginal areas. To the east, the Kattegat Ice Stream was flanked by passive glaciers in southern Sweden and its distribution was probably governed by the presence of low permeability and highly deformable marine and lacustrine deposits. When glaciers from southern Norway blocked the Norwegian Channel, former marine basins in the Skagerrak and Kattegat experienced glaciolacustrine conditions around 31–29 ka BP. The Kattegat Ice Stream became active some time between 29 ka BP and 26 ka BP, when glaciers from the Oslo region penetrated deep into the shallow depression occupied by the Kattegat Ice Lake. Deglaciation and an interlude with periglacial and glaciolacustrine sedimentation lasted until c. 24–22 ka BP and were succeeded by the Main Glacier Advance from central Sweden reaching the limit of Late Weichselian glaciations in Denmark around 22–20 ka BP, the peak of the LGM. This was followed by deglaciation and marine inundation in the Kattegat and Skagerrak around 17 ka BP.  相似文献   

15.
Understanding the pace and drivers of marine-based ice-sheet retreat relies upon the integration of numerical ice-sheet models with observations from contemporary polar ice sheets and well-constrained palaeo-glaciological reconstructions. This paper provides a reconstruction of the retreat of the last British–Irish Ice Sheet (BIIS) from the Atlantic shelf west of Ireland during and following the Last Glacial Maximum (LGM). It uses marine-geophysical data and sediment cores dated by radiocarbon, combined with terrestrial cosmogenic nuclide and optically stimulated luminescence dating of onshore ice-marginal landforms, to reconstruct the timing and rate of ice-sheet retreat from the continental shelf and across the adjoining coastline of Ireland, thus including the switch from a marine- to a terrestrially-based ice-sheet margin. Seafloor bathymetric data in the form of moraines and grounding-zone wedges on the continental shelf record an extensive ice sheet west of Ireland during the LGM which advanced to the outer shelf. This interpretation is supported by the presence of dated subglacial tills and overridden glacimarine sediments from across the Porcupine Bank, a westwards extension of the Irish continental shelf. The ice sheet was grounded on the outer shelf at ~26.8 ka cal bp with initial retreat underway by 25.9 ka cal bp. Retreat was not a continuous process but was punctuated by marginal oscillations until ~24.3 ka cal bp. The ice sheet thereafter retreated to the mid-shelf where it formed a large grounding-zone complex at ~23.7 ka cal bp. This retreat occurred in a glacimarine environment. The Aran Islands on the inner continental shelf were ice-free by ~19.5 ka bp and the ice sheet had become largely terrestrially based by 17.3 ka bp. This suggests that the Aran Islands acted to stabilize and slow overall ice-sheet retreat once the BIIS margin had reached the inner shelf. Our results constrain the timing of initial retreat of the BIIS from the outer shelf west of Ireland to the period of minimum global eustatic sea level. Initial retreat was driven, at least in part, by glacio-isostatically induced, high relative sea level. Net rates of ice-sheet retreat across the shelf were slow (62–19 m a−1) and reduced (8 m a−1) as the ice sheet vacated the inner shelf and moved onshore. A picture therefore emerges of an extensive BIIS on the Atlantic shelf west of Ireland, in which early, oscillatory retreat was followed by slow episodic retreat which decelerated further as the ice margin became terrestrially based. More broadly, this demonstrates the importance of localized controls, in particular bed topography, on modulating the retreat of marine-based sectors of ice sheets.  相似文献   

16.
The evolution of the southern Greenland Ice Sheet is interpreted from a synthesis of geological data and palaeoclimatic information provided by the ice-sheet cores. At the Last Glacial Maximum the ice margin would have been at the shelf break and the ice sheet was fringed by shelf ice. Virtually all of the present ice-free land was glaciated. The initial ice retreat was controlled by eustatic sea level rise and was mainly by calving. When temperatures increased, melt ablation led to further ice-margin retreat and areas at the outer coast and mountain tops were deglaciated. Retreat was interrupted by a readvance during the Neria stade that may correlate with the Younger Dryas cooling. The abrupt temperature rise at the Younger Dryas-Holocene transition led to a fast retreat of the ice margin, and after ∼9 ka BP the ice sheet was smaller than at present. Expansion of the ice cover began in the Late Holocene, with a maximum generally during the Little Ice Age. The greatest changes in ice cover occurred in lowland areas, i.e. in the region of the Qassimiut lobe. The date of the historical maximum advance shows considerable spatial variability and varies between AD 1600 and the present. Local anomalous readvances are seen at possibly 7-8 ka and at c. 2 ka BP. A marked relative sea level rise is seen in the Late Holocene; this is believed to reflect a direct glacio-isostatic response to increasing ice load.  相似文献   

17.
The presence of a complex bedform arrangement on the sea floor of the continental shelf in the western Amundsen Sea Embayment, West Antarctica, indicates a multi-temporal record of flow related to the activity of one or more ice streams in the past. Mapping and division of the bedforms into distinct landform assemblages reveals their time-transgressive history, which implies that bedforms can neither be considered part of a single downflow continuum nor a direct proxy for palaeo-ice velocity, as suggested previously. A main control on the bedform imprint is the geology of the shelf, which is divided broadly between rough bedrock on the inner shelf, and smooth, dipping sedimentary strata on the middle to outer shelf. Inner shelf bedform variability is well preserved, revealing information about local, complex basal ice conditions, meltwater flow, and ice dynamics over time. These details, which are not apparent at the scale of regional morphological studies, indicate that past ice streams flowed across the entire shelf at times, and often had onset zones that lay within the interior of the Antarctic Ice Sheet today. In contrast, highly elongated subglacial bedforms on sedimentary strata of the middle to outer shelf represent a timeslice snapshot of the last activity of ice stream flow, and may be a truer representation of fast palaeo-ice flow in these locations. A revised model for ice streams on the shelf captures complicated multi-temporal bedform patterns associated with an Antarctic palaeo-ice stream for the first time, and confirms a strong substrate control on a major ice stream system that drained the West Antarctic Ice Sheet during the Late Quaternary.  相似文献   

18.
The deglacial history of the central sector of the last British–Irish Ice Sheet is poorly constrained, particularly along major ice‐stream flow paths. The Tyne Gap Palaeo‐Ice Stream (TGIS) was a major fast‐flow conduit of the British–Irish Ice Sheet during the last glaciation. We reconstruct the pattern and constrain the timing of retreat of this ice stream using cosmogenic radionuclide (10Be) dating of exposed bedrock surfaces, radiocarbon dating of lake cores and geomorphological mapping of deglacial features. Four of the five 10Be samples produced minimum ages between 17.8 and 16.5 ka. These were supplemented by a basal radiocarbon date of 15.7 ± 0.1 cal ka BP, in a core recovered from Talkin Tarn in the Brampton Kame Belt. Our new geochronology indicates progressive retreat of the TGIS from 18.7 to 17.1 ka, and becoming ice free before 16.4–15.7 ka. Initial retreat and decoupling of the TGIS from the North Sea Lobe is recorded by a prominent moraine 10–15 km inland of the present‐day coast. This constrains the damming of Glacial Lake Wear to a period before ∼18.7–17.1 ka in the area deglaciated by the contraction of the TGIS. We suggest that retreat of the TGIS was part of a regional collapse of ice‐dispersal centres between 18 and 16 ka.
  相似文献   

19.
<正>Considerable controversy exists over whether or not extensive glaciation occurred during the global Last Glacial Maximum(LGM) in the Larsemann Hills.In this study we use the in situ produced cosmogenic nuclide ~(10)Be(half life 1.51 Ma) to provide minimum exposure ages for six bedrock samples and one erratic boulder in order to determine the last period of deglaciation in the Larsemann Hills and on the neighboring Bolingen Islands.Three bedrock samples taken from Friendship Mountain(the highest peak on the Mirror Peninsula,Larsemann Hills;~2 km from the ice sheet) have minimum exposure ages ranging from 40.0 to 44.7 ka.The erratic boulder from Peak 106(just at the edge of the ice sheet) has a younger minimum exposure age of only 8.8 ka.The minimum exposure ages for two bedrock samples from Blundell Peak(the highest peak on Stornes Peninsula,Larsemann Hills;~2 km from the ice sheet) are about 17 and 18 ka.On the Bolingen Islands(southwest to the Larsemann Hills;~10 km from the ice sheet),the minimum exposure age for one bedrock sample is similar to that at Friendship Mountain(i.e.,44 ka).Our results indicate that the bedrock exposure in the Larsemann Hills and on the neighboring Bolingen Islands commenced obviously before the global LGM(i.e.,20-22 ka),and the bedrock erosion rates at the Antarctic coast areas may be obviously higher than in the interior land.  相似文献   

20.
Geophysical data from Gerlache Strait, Croker Passage, Bismarck Strait and the adjacent continental shelf reveal streamlined subglacial bedforms that were produced at the bed of the Antarctic Peninsula Ice Sheet (APIS) during the last glaciation. The spatial arrangement and orientation of these bedforms record the former drainage pattern and flow dynamics of an APIS outlet up‐flow, and feeding into, a palaeo‐ice stream in the Western Bransfield Basin. Evidence suggests that together, they represent a single ice‐flow system that drained the APIS during the last glaciation. The ice‐sheet outlet flowed north/northeastwards through Gerlache Strait and Croker Passage and converged with a second, more easterly ice‐flow tributary on the middle shelf to form the main palaeo‐ice stream. The dominance of drumlins with low elongation ratios suggests that ice‐sheet outlet draining through Gerlache Strait was comparatively slower than the main palaeo‐ice stream in the Western Bransfield Basin, although the low elongation ratios may also partly reflect the lack of sediment. Progressive elongation of drumlins further down‐flow indicates that the ice sheet accelerated through Croker Passage and the western tributary trough, and fed into the main zone of streaming flow in the Western Bransfield Basin. Topography would have exerted a strong control on the development of the palaeo‐ice stream system but subglacial geology may also have been significant given the transition from crystalline bedrock to sedimentary strata on the inner–mid‐shelf. In the broader context, the APIS was drained by a number of major fast‐flowing outlets through cross‐shelf troughs to the outer continental shelf during the last glaciation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号