首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
通过对该挖方滑坡的地质条件、岩土体结构、软弱结构面特征、变形特征及监测数据的分析,并采用FLAC3D进行数值模拟,探讨川东北红层地区软弱夹层岩体边坡的破坏机制,为类似条件边坡的开挖、监测、预警和支护提供参考。  相似文献   

2.
高陡岩质边坡稳定性三维离散元分析   总被引:3,自引:2,他引:1  
某高陡岩质边坡地质条件复杂、软弱结构面发育、开挖高度大、坡度陡、临空面多,为边坡变形提供了有利的空间,边坡多处出现失稳破坏迹象。通过对边坡工程地质条件调查,岩体结构特征和边坡开挖等影响因素的分析,认为边坡变形主要发生在强风化强卸荷岩体内,受软弱结构面的控制比较明显,表现为结构面组合控制的块体变形失稳破坏模式。采用3DEC数值模拟软件,模拟了边坡开挖后坡体变形特征,数值模拟结果表明,边坡浅表层块体以及控制性块体稳定性差,可能导致边坡产生整体失稳。  相似文献   

3.
在对拱肩槽自然边坡工程地质条件详细调查的基础上,采用宏观地质分析和极限平衡法、数值模拟法相结合的研究手段,分层次对乌东德水电站左岸拱肩槽人工边坡整体稳定和局部稳定性进行了系统研究。研究表明乌东德水电站左岸拱肩槽边坡整体稳定性较好,三维离散元数值模拟结果显示,人工边坡变形以少量回弹变形为主,变形特征不突出,稳定性系数为1.4~1.6。在分析边坡开挖后可能形成的块体边界条件基础上,提出了人工边坡可能出现的块体失稳模式,以影响块体稳定性的结构面几何特征、结构面性状和结构面卸荷松弛张开特征入手,建立块体稳定性工程地质评价标准,对块体稳定性进行了宏观地质分析,并采用三维刚体极限平衡方法对可能产生的块体模型进行了计算分析,得到块体开挖后的稳定系数。结果表明,人工边坡可能出现块体多处于基本稳定状态。综合整体稳定性和局部稳定性研究成果,提出人工边坡加固方案建议。研究成果为工程设计与施工提供了重要依据,并对类似工程提供了可以借鉴的经验。  相似文献   

4.
两河口水电站引水进口边坡变形稳定性分析   总被引:1,自引:1,他引:0  
两河口水电站引水进口边坡主要由砂、板岩组成的陡倾横向坡,最大开挖坡高215 m。本文根据边坡的地质结构及变形破坏特征,分析了边坡的破坏模式及稳定状况。在此基础上,采用三维有限元数值模拟的方法,模拟了工程边坡的分步开挖过程。分析表明,边坡稳定性主要受f34-1等中缓倾角结构面及Ⅴ级岩体的控制,具有沿中缓倾角结构面及Ⅴ级岩体发生滑移破坏的趋势,塑性破坏区主要分布在Ⅴ级岩体及其断层内,水平深度一般为35 m,研究成果对边坡的支护设计具有重要意义。  相似文献   

5.
王寅冬 《吉林地质》2021,40(2):72-76
本文通过对吉林省延吉市铁南新丰砖厂滑坡的现场进行了调查研究和实验测试,进一步对滑坡稳定性进行分析.首先,通过对现场调查情况和现有资料的分析,论述边坡工程地质条件、阐述滑坡概况与成因机制.其次,建立边坡力学模型,对不同破坏类型的破坏机制进行分析,进而建立边坡稳定性研究的三维数学模型.用FLAC法计算边坡稳定系数并分析确定数值模拟中的参数,编制程序对边坡变形过程进行三维模拟,确定工程边坡的屈服区域,从而分析研究滑坡的稳定性.  相似文献   

6.
文本针对东露天煤矿槽仓黄土高边坡,利用有限元方法,进行了边坡开挖前后变形规律的数值分析。黄土高边坡开挖后发生较大位移,针对未支护开挖条件下的边坡位移发展分布规律与应力集中区域的模拟结果,对重点支护部位进行动态设计防护。相比物理试验研究,数值试验具有许多优势,对数值模拟结果进行分析,拟在边坡坡面采用锚杆与土钉联合支护方法,在边坡直臂段采用钢内撑与护坡桩联合支护方法。模拟结果表明,该支护方案可以均衡应力分布,有效抑制水平位移的扩大,为边坡重点加固区域的动态设计施工提供了科学依据,达到了工程安全等级的设计要求。  相似文献   

7.
泄洪雨雾入渗导致边坡变形进而影响边坡稳定性的问题已成水电建设的重要工程问题之一。针对西南某水电站溢洪道陡槽段边坡挤压错动带发育、节理裂隙和控制性结构面发育等结构特点,分析该边坡开挖支护后泄洪雾化条件下潜在失稳的边界条件及变形破坏模式。根据边坡所处的地质环境条件,从泄洪雾化对边坡岩体的作用机制入手,得到了雨雾对该边坡稳定性的影响主要为雨雾沿着顺倾坡外拉裂面入渗,影响结构面力学特性,从而影响边坡稳定性。并按结构面类型取不同软化系数,采用数值模拟方法分析了泄洪雨雾入渗后边坡的变形破坏趋势。分析结果表明:在考虑不同的软化系数时,溢0+555.00下游侧边坡岩体稳定性有较大的差别,若以中间值0.75考虑,溢洪道陡槽段边坡的稳定性稍差,可能产生一定规模的剪切蠕动变形或块体失稳,必须加强一定的支护措施保证该处边坡在施工期安全和运营期间的长期稳定性。  相似文献   

8.
通过对香溪大道失稳边坡地质灾害调查,对边坡的地形地貌、地层岩性、岩体结构、原设计方案与施工过程进行研究,在此基础上通过FLAC3D数值模拟,结合工程地质条件分析,对原格构挡墙逆作法施工诱发边坡牵引式滑动过程进行了分析,并对其变形破坏机制进行深入探讨。研究结果表明:边坡变形受工程地质条件控制作用明显,边坡开挖改变了坡体原来的力学平衡条件,为边坡变形失稳创造了客观条件;由于超开挖施工,受格构挡墙自重作用,下部支撑岩体受压破坏,导致格构挡墙失稳下沉,带动其后坡体变形,形成牵引式滑动;随着坡体滑移的发展,边坡将逐渐拉裂破坏并形成贯通的剪切滑动面,从已施工的格构挡墙下部贯通剪出,最终整体失稳破坏;基于破坏机制分析的应急治理措施将重点放在为原格构挡墙下部提供有效支撑和控制潜在滑动面变形上;监测结果表明,应急治理后边坡达到稳定性要求。   相似文献   

9.
锦屏一级水电站左坝肩边坡数值模拟   总被引:1,自引:0,他引:1  
锦屏一级水电站左岸边坡工程地质条件复杂,特别是由控制性软弱结构面切割形成的楔形体对左岸边坡的稳定性影响较大。工程中已采用系统预应力锚索支护和抗剪洞回填对楔形体进行加固处理。为了解两种支护措施及其施工工序对楔形坡稳定性的影响,采用数值模拟方法,对支护措施在不同工况条件下,边坡继续开挖进行模拟计算。通过不同工况数值模拟对比分析发现,系统锚索支护对限制塑性区发展起到了良好的效果,抗剪洞回填对限制楔形体底滑面的错动有非常明显的效果,及时进行锚索支护和回填抗剪洞是锦屏一级水电站左岸边坡在施工期乃至运行期间稳定运行的有力保证,通过控制性软弱结构面的位移变化趋势判断边坡稳定性是可行的。  相似文献   

10.
列车震动荷载对边坡稳定性的影响分析   总被引:1,自引:0,他引:1  
以某高速铁路隧道出口边坡为研究对象,在边坡工程地质条件、岩体结构特征及变形破坏特征调查分析的基础上,阐明了边坡的变形破坏模式为受卸荷结构面控制的块体顺坡向滑塌破坏。通过建立边坡的三维数值模型,对比分析了边坡在天然工况(施工平台及隧道开挖前)和列车震动荷载工况下,沿隧道走向剖面上的应力、变形及剪应变增量变化特征,并分析了施工平台开挖及列车震动荷载对边坡稳定性的影响,得出了施工平台开挖及列车震动荷载,可能在开挖面附近及坡内软岩夹层中引起局部的变形破坏,对边坡整体稳定性影响较小的结论。  相似文献   

11.
黄土填方高边坡变形破坏机制分析   总被引:1,自引:1,他引:0  
本文依据西北某油田倒班基地黄土填方高陡边坡工程勘察, 研究了该边坡的变形破坏机制, 通过对边坡工程地质条件及变形破坏分析, 建立FLAC3D地质模型, 采用数值模拟方法研究了边坡变形破坏机制。研究结果表明, 主要变形区或破坏区为陡坎周围至其沿坡面向下20~25m 的范围之间, 其破坏深度底界为全新世填土层Q4与原状黄土Q3接触面, 但要重点控制沿坡面向下20~25m 的范围之间的变形。数值模拟结果表明, 该边坡目前整体稳定性较好, 不会发生整体变形破坏。  相似文献   

12.
浅埋偏压隧道出口变形机理及稳定性分析   总被引:3,自引:0,他引:3  
以皖南某公路浅埋偏压隧道出口段高边坡为研究对象,提出了零开挖进洞的施工方案,并结合洞口的工程地质条件,采取必要的加固措施。通过对该边坡现场工程地质条件的系统调查,首先对边坡的岩体结构类型及其成因机制、结构面与坡面组合特征进行细致研究,在此基础上通过FLAC3D数值模拟,结合工程地质条件分析,对其变形破坏机制进行深入探讨。研究结果表明,边坡的变形首先以隧道内侧存在的软弱岩体(挤压错动带、断层)的不均匀压缩为先导,进而引起上部岩体产生由NE向陡缓结构面构成的阶梯状滑动,这将会使隧道构筑物及隧道外壁承受较大的压应力,当压应力超过隧道构筑物及外壁的极限强度时将产生破坏,从而诱发上部岩体产生更大规模的地质灾害。基于此,隧道进洞开挖前首先应对上部岩体进行加固处理,避免隧道构筑物及隧道外壁产生应力集中现象。  相似文献   

13.
应用ANSYS结构分析软件,模拟了思林水电站通航建筑物高边坡的地形、地质条件以及开挖的过程,建立边坡开挖的有限元计算分析模型,分析边坡在自然状态、分级开挖以及锚杆支护加固等工况下的应力、变形及其整体稳定性.定义单元的局部安全系数,得到了边坡开挖加固后稳定安全系数的分布.根据计算成果,指出现设计加固措施可以保证边坡稳定,无需增加其他工程措施.  相似文献   

14.
三峡库区某公路顺层岩质边坡变形特征分析   总被引:6,自引:0,他引:6  
对于大量中小型岩质边坡,由于地质结构简单、边界条件清晰,加之施工周期短,不可能也没有必要对其开展较大规模勘探工程、进行全面系统研究,因此,数值模拟技术成为这类边坡变形破坏分析及治理工程验证的首选手段之一。本文利用离散单元方法(DEM)分析了三峡水库某公路顺层岩质边坡开挖变形破坏机制及其演变过程,并对工程治理效果进行模拟研究。该方法节约了工程周期及造价,应成为中小型岩质边坡治理工程设计的辅助措施。  相似文献   

15.
胡浩军  王元汉 《岩土力学》2007,28(Z1):669-672
运用FLAC3D软件中的Mohr-Coulomb本构模型对北京市某高层住宅楼基坑工程进行了数值模拟分析,对基坑开挖、失稳破坏、边坡支护进行了评价,并对模拟结果与实测结果进行了对比,分析了基坑变形、失稳破坏和支护过程。研究表明,FLAC3D软件中的Mohr-Coulomb本构模型能够方便、准确地模拟基坑开挖、边坡的大位移失稳破坏、边坡的支护过程,其计算结果安全可靠。分析结果也证实了FLAC3D在基坑工程数值模拟方面具有良好的适应性。  相似文献   

16.
岩质边坡关键块体的搜索方法及工程应用   总被引:1,自引:0,他引:1  
工程边坡开挖所揭露的某些结构面组合块体在破坏原有静力平衡状态后,进行应力重新分配,进而块体会发生失稳、滑动等变形,甚至影响到整个边坡发生破坏,因此,结构面组合块体的稳定性是决定岩质边坡稳定的重要因素。本文通过对某工程开挖边坡地形和结构面三维实体模型的建立,实现了边坡结构面与开挖地形实体模型在AutoCAD平台上的可视化操作,剖切不同位置的二维图形预测分析了边坡开挖后可能存在的结构面组合块体,采用块体计算程序(Swegde)验证关键块体并进行稳定性评价。结果表明:三维实体模型及剖切技术与块体计算方法的结合,易于搜索关键块体。事实证明,该方法操作简便,计算结果准确,搜索方法具备可行性。  相似文献   

17.
顺层岩质边坡易发生失稳破坏,当边坡中发育有顺坡向陡倾结构面时,更不利于边坡稳定。以贵州某水电站大坝左岸含陡倾结构面顺层边坡为例,在综合分析地质条件及开挖扰动的基础上,结合离散元软件UDEC,分析了边坡的变形破坏模式和稳定性。研究结果表明,边坡可能发生的变形破坏模式主要有滑移、拉裂—滑移两种;自然状况下及开挖后,边坡都有沿断层f_9、卸荷裂隙L_1及岩层面发生滑移的趋势,且工程开挖导致边坡沿该结构面发生内部滑动;对边坡采用预应力锚索加固后,变形得到有效控制,位移数值计算值与实际监测值基本吻合。  相似文献   

18.
对边坡稳定性分别采用按极限平衡法、有限元强度折减法进行二维分析,通过对比计算结果来验证强度折减法分析的准确性与可行性。针对边坡开挖与加固及隧洞开挖的三维效应,采用三维弹塑性有限元强度折减法分析计算边坡的稳定性,计算分析了开挖完成、支护完成条件下边坡安全系数、位移分布、主应力分布、等效塑性应变区和潜在滑动面。结果表明,支护加固可较大提高边坡的稳定安全系数,三维强度折减法分析在岩土工程领域具有明显优势。  相似文献   

19.
松散堆积体工程边坡变形机理分析及支护对策研究   总被引:1,自引:0,他引:1  
合理选择开挖坡比、正确认识变形破坏机理是影响松散堆积体边坡稳定性和施工安全的前提, 本文研究了西南地区某松散堆积体工程边坡的结构特征, 根据地形条件确定了合理的开挖坡比, 采用二维有限元研究了开挖边坡的变形机理并根据模拟结果确定潜在滑动面, 在此基础上, 提出支护对策。研究结果表明, 边坡由厚度达70m 的坡洪积、泥石流块碎石堆积体组成, 斜坡下部缓中部稍陡, 开挖平台位于缓坡部位, 根据地形条件结合坡体结构特征确定边坡开挖坡比为1: 0. 75; 数值模拟结果表明, 边坡变形开挖面附近及坡顶拉应力和坡体下部最大剪应力控制, 坡顶部位将首先产生拉张裂隙, 开挖边坡内部产生从坡脚部位向上发展的剪切变形, 滑面一旦与坡顶拉裂缝贯通, 边坡将产生整体失稳; 边坡采用锚拉桩、锚索框架、锚杆框架、排水相结合的综合治理措施进行支护。  相似文献   

20.
下伏软弱层黄土边坡变形机制分析及治理对策研究   总被引:4,自引:6,他引:4  
本文研究了陕北某电厂夹断层破碎带上覆黄土的泥岩、砂岩互层反倾边坡的变形机制,并研究治理对策及其治理效果。通过边坡工程地质条件及变形破坏特征分析,建立FLAC3D地质模型,采用数值模拟方法研究了边坡变形破坏机制,在此基础上提出削方减载、锚筋桩、锚杆及坡面防护的综合治理措施。研究结果表明,边坡的变形受开挖坡形的影响,坡体浅表层特别是断层带及坡顶黄土部位出现大范围拉应力集中,断层带出现向坡外的挤出变形,带动上部黄土的牵引式变形,引起沿黄土和基岩基覆界面的剪切变形,在黄土中出现大量拉裂缝,在一定条件下潜在滑移面逐渐贯通,坡体将产生整体失稳。边坡的治理应通过削方减载改善坡体应力环境,并重点控制断层带及黄土与基岩基覆界面的变形,数值模拟结果表明,治理后边坡稳定性较好,满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号