首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为更快地获取高可靠性、高精度的天顶对流层延迟,提出了选择历元间差分与非差组合模型为函数模型,对BDS/GPS钟差参数采用近实时方式进行估计。为此,从全球范围内均匀选取45个MGEX跟踪站,使用GFZ的超快速轨道产品为钟差估计提供初始轨道信息,并以事后产品为参考值。试验结果表明,GPS实时钟差的精度优于0.06 ns,略低于事后钟差估计精度,三类BDS卫星的实时钟差估计精度均在0.04~0.08 ns,其中GEO卫星的准实时钟差精度略低于IGSO和MEO卫星,满足近实时天顶对流层延迟估计的需求。  相似文献   

2.
卫星钟差的难预测性是影响实时高精度定位的重要因素之一。为快速获得高精度位置或对流层等信息,在非差观测模型的基础上,本文提出了一种延迟量约1 h的近实时钟差估计策略,该策略主要包含超快速轨道解算和钟差估计两部分。经验证,预报部分第2~5 h的GPS轨道三维平均精度为3.85 cm,BDS GEO和IGSO+MEO轨道三维平均精度分别为81.4和21.74 cm。基于超快速轨道可获得近实时钟差精度GPS为0.054 ns,BDS为0.12 ns。最后通过BDS+GPS静态PPP试验验证了轨道和钟差的可用性。  相似文献   

3.
实时钟差产品是高精度广域差分位置服务(亚米级、分米级、厘米级)的基础产品,通过研究BDS/GPS融合的ISB,研究了各类型接收机BDS GEO/IGSO/MEO ISB差异,提出了在BDS/GPS联合的实时钟差估计中引入3个ISB参数的函数模型,在此基础上基于非差法实现了BDS/GPS联合的实时钟差估计。采用MGEX和湖南CORS实时观测数据进行了实时钟差解算,利用iGMAS产品综合中心提供的事后精密钟差产品作为基准,对比分析了新方法与原有方法的实时钟差产品的精度差异。结果表明,该方法与原方法估计的GPS钟差精度相当,对BDS实时钟差精度改进显著,尤其对BDS IGSO/MEO卫星,改进幅度在20%以上,验证了算法的有效性。  相似文献   

4.
针对北斗卫星三号(BDS-3)卫星钟的表现情况的问题,该文选取了全球均匀分布的120个国际GNSS服务(IGS)跟踪站的北斗三号卫星观测数据进行北斗卫星钟差估计,利用评价卫星钟差产品的方法分析北斗新一代卫星钟的精度水平。得到结果如下:北斗卫星钟中圆地球轨道(MEO)精度在0.1 ns以内、倾斜地球同步轨道(IGSO)精度在0.15 ns以内,地球静止轨道(GEO)精度在0.2~0.9 ns水平;BDS-3卫星的频率的万秒稳定度已经处于1×10-14水平;GPS与BDS精密单点定位解算结果的均方根误差(RMS)均在厘米级。基于卫星钟差实验结果表明,MEO比IGSO卫星钟差精度高,稳定性强;BDS-3搭载的铷钟(Rb-Ⅱ)和氢钟(PHM)比BDS-2的铷钟(Rb)更稳定,这是因为发射较早的卫星钟普遍受到硬件老化影响,相位与频率的波动较大;BDS在U方向上的精度与收敛速度略有不足,可通过GPS+BDS组合定位提升U方向单点定位性能。北斗卫星钟的精度、稳定性已达到钟差预报及实时精密单点定位应用的需求。  相似文献   

5.
实时钟差产品是高精度广域差分位置服务(亚米级、分米级、厘米级)的基础产品,本文针对BDS/GPS轨道精度差异,设计了一种顾及轨道精度差异观测权函数,优化了实时钟差估计的随机模型,在此基础上基于非差法实现了BDS/GPS联合的实时钟差估计。采用MGEX和iGMAS跟踪站的实时观测数据进行实时钟差解算,并与iGMAS产品综合中心提供的事后精密钟差产品进行了比较分析。结果表明:基于该方法估计的钟差精度对单GPS、单BDS和BDS/GPS融合都有提高,其中BDS钟差精度整体较GPS更为显著,提高幅度约12.8%,其中IGSO/MEO更为突出,提高幅度约20%,验证了方法的有效性。  相似文献   

6.
北斗卫星导航系统单星授时精度分析   总被引:2,自引:1,他引:1  
为研究北斗卫星导航系统单星授时精度,本文基于GPS单星授时原理,结合北斗卫星多种类型星座特点,编写了BDS单星授时软件。利用iGMAS站数据进行了试验,在对原始数据进行监测并将异常信息剔除后,将授时结果与中国测绘科学研究院北斗分析中心(CGS)钟差文件进行比对,分析了BDS不同轨道卫星(GEO/IGSO/MEO)下的BDS单星授时精度。结果表明,GEO卫星的授时精度为27.39 ns,IGSO卫星的授时精度为18.37 ns,MEO卫星的授时精度为18.62 ns。  相似文献   

7.
针对BDS-3现有卫星空间信号精度评估问题,该文以BDS-2和BDS-3卫星为研究对象,介绍了BDS卫星空间信号精度评估的方法,基于MGEX发布的2019-05-01—2019-05-31日连续31d的广播星历与WUM分析中心的精密星历产品对33颗BDS卫星的轨道误差、卫星钟差、用户测距误差(URE)和空间信号测距误差(SISRE)进行精度评估。研究结果表明:BDS-2中,IGSO与MEO的轨道精度优于GEO,径向精度优于切向和法向;星载钟差均值优于12.1ns;URE和SISRE均值分别优于1.0和1.2m;BDS-3MEO卫星轨道径向、切向、法向均值分别优于0.2、0.8、0.4m,径向和法向比BDS-2 MEO分别提高45.8%与21.1%;BDS-3卫星星载钟差均值优于7.7ns,比BDS-2提高36.2%;BDS-3的URE和SISRE均值分别优于0.6和0.5m,比BDS-2分别提高42.9%和47.4%。  相似文献   

8.
GNSS增强系统中精密实时钟差高频估计及应用研究   总被引:1,自引:0,他引:1  
GNSS星基差分增强系统依赖于实时轨道及钟差增强信息。本文主要研究多GNSS实时精密钟差估计模型,在传统非差基础上优化待估参数,实现了一种高效的Multi-GNSS实时钟差简化估计模型。基于PANDA软件开展了实时轨道数据处理与分析,经过验证可获得的GPS/北斗MEO/Galileo实时轨道径向精度1~5cm,北斗GEO/IGSO卫星径向精度约10cm。分析发现本文优化的实时钟差简化估计模型单历元解算效率较高,可应用于实时钟差增强信息高频(如1Hz)更新,且解算获得的实时钟差不存在常偏为绝对钟差;基于实时轨道,通过该模型可获得实时钟差精度GPS约0.22ns,北斗GEO约0.50ns、IGSO/MEO约0.24ns,Galileo约0.32ns。在此基础上,利用目前所获取的MultiGNSS实时数据流搭建了Multi-GNSS全球实时增强原型系统,并基于互联网实时播发增强信息,可初步实现实时PPP厘米级服务、伪距米级导航定位服务。  相似文献   

9.
基于GNSS(global navigation satellite system)非差观测量,利用双线程钟差加密的方法,本文实现了导航卫星实时钟差的逐秒更新。通过选取全球均匀分布的76个参考站对四系统钟差进行联合估计,并从实时轨道精度,解算效率,钟差精度和精密单点定位(precision point positioning,PPP)定位结果对该系统进行分析和评估。结果表明,GPS预报轨道径向精度为2.3 cm,GLONASS和Galileo预报轨道径向精度为3 cm和3.5 cm,北斗GEO、IGSO、MEO卫星预报轨道径向精度分别为31 cm,17 cm和5.3 cm;钟差统计结果表明,GPS实时钟差精度优于0.2 ns,GLONASS钟差精度优于0.4 ns,Galileo钟差精度优于0.3 ns,受轨道影响,北斗GEO实时钟差精度为0.6~1.0 ns,IGSO钟差精度为0.4~0.7 ns,MEO钟差精度为0.3~0.4 ns;PPP定位结果表明,解算钟差定位精度与事后钟差定位结果相当,平面精度在3 cm以下,高程精度在5 cm以下。  相似文献   

10.
仿造GPS超快速轨道的解算模式,轨道服务器生成3 h间隔的BDS的超快速轨道作为实时精密轨道。钟差服务器接收实时观测数据,并固定实时精密轨道和参考站精密坐标实时解算精密轨道和钟差改正数,然后利用NTRIP播发给用户,用户利用这些改正数还原精密轨道和钟差进行实时PPP动态定位。以GBM的事后精密轨道和钟差作参考,GEO卫星实时轨道SISRE(orb)在0. 3~0. 9 m,IGSO/MEO卫星实时轨道SISRE(orb)在0. 08~0. 19 m; GEO实时精密钟差二次差STD在0. 6~1. 1 ns,IGSO/MEO实时精密钟差二次差STD在0. 2~0. 6 ns; GEO卫星SISRE在20 cm左右,IGSO/MEO卫星SISRE在4~11 cm。用户利用精密轨道和钟差改正数进行动态PPP定位,排除由于BDS星座不完善和GEO卫星相对地球静止的因素,单BDS能够收敛的测试组平均收敛时间在62. 5 min,收敛后NEU 3方向的RMS分别是7. 53、13. 84和15. 93 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号