首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A two-dimensional numerical model of the tidal motions in the Bohai sea   总被引:8,自引:0,他引:8  
The motions of diurnal, semidiurnal, and shallow-water tides and tidal current in the Bohai Sea are computed using a finite-difference method based on two-dimensional tidal wave equations. Good agreement of the computed results with the observed data is achieved for diurnal and semidiurnal tides. The general pattern of the computed quarterdiurnal tide conforms to the observed pattern, but the computed amplitudes are on the high side. This is attributed to the ineligibility of the friction terms in the two-dimensional governing equations to dissipate the energy of high frequency tidal waves. It is found that the existing semidiurnal cotidal charts have considerable differences in Laizhou Bay. The difference is likely caused by the movement of the coastline of the Yellow River Delta. The present result coincides with the recent empirical cotidal chart. The computation shows a new current-amphidromic point for both semidiurnal and durnal tidal currents. The diurnal current has two current-amphidromic points in the Bohai Sea with co-phase lines progressing clockwise round these points. The semi-diurnal current has also two current-amphidromic points with co-phase lines progressing counterclockwise. The distributions of tide-induced residual elevation and currents are illustrated, and the tidal energy fluxes are computed. Institute of Marine Scientific and Technological Information, State Oceanic Administration Contribution No. 1125, Institute of Oceanology, Academia Sinica, Qingdao, China.  相似文献   

2.
The observed currents in summer in the Bohai Sea   总被引:3,自引:0,他引:3  
A harmonic method was used to analyze the tidal currents observed in summer at 11 stations made from 1996 to 2001 in the Bohai Sea, China. Data was compared among different instruments and intervals. Elliptic elements were calculated based on harmonic constants, of which vertical distributions of the maximum speed and rotation direction were discussed for understanding the characteristics of diurnal and semi-diurnal tidal current components. The results indicate that the maximum speed of M2 tidal current component is much larger than that of K1; the rotation direction of M2 tidal current constituent is clockwise in the central part of the Bohai Sea and in the Laizhou Bay, but anticlockwise in the Liaodong Bay and Bohai Bay. For K1 tidal current constituent, it is clockwise in the central Bohai Sea but anti-clockwise in the Laizhou Bay and Liaodong Bay. The tidal currents in most stations in the Bohai Sea were regular semidiurnal except for those in the central Bohai Sea, being irregular semidiurnal.  相似文献   

3.
Observation of the abyssal western boundary current in the Philippine Sea   总被引:2,自引:0,他引:2  
Mooring observations were conducted from July 16, 2011 to March 30, 2012 east of Mindanao, Philippines(127°2.8′E, 8°0.3′N) to observe the abyssal current at about 5600 m deep and 500 m above the ocean bottom. Several features were revealed: 1) the observed abyssal current was highly variable with standard deviations of 57.3 mm/s and 34.0 mm/s, larger than the mean values of-31.9 and 16.6 mm/s for the zonal and meridional components, respectively; 2) low-frequency current longer than 6 days exhibited strong seasonal variation, flowing southeastward(mean flow direction of 119.0° clockwise from north) before about October 1, 2011 and northwestward(mean flow direction of 60.5° counter-clockwise from north) thereafter; 3) the high-frequency flow bands were dominated by tidal currents O 1, K 1, M 2, and S 2, and near-inertial currents, whose frequencies were higher than the local inertial frequency. The two diurnal tidal constituents were much stronger than the two semidiurnal ones. This study provides for the first time an observational insight into the abyssal western boundary current east of Mindanao based on long-term observations at one site. It is meaningful for further research into the deep and abyssal circulation over the whole Philippine Sea and the 3D structure of the western boundary current system in this region. More observational and high-resolution model studies are needed to examine the spatial structure and temporal variation of the abyssal current over a much larger space and longer period, their relation to the upper-layer circulation, and the underlying dynamics.  相似文献   

4.
The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morphodynamic features in the area. A semi-enclosed rectangular basin with and without a coastal barrier was schematized from the topography of the Bohai Sea and Yellow Sea. The 2D tidal current field in this basin was simulated using the DELFT3D-FLOW model. The concept of tidal wave refraction, which highlights the effect of the sloped or stepped submarine topography on the propagation of the tidal waves, was introduced to explain the formation of the radial tidal current field. Under the effect of tidal wave refraction, co-phase lines of the counterclockwise rotating tidal wave and incident tidal wave are transformed into clockwise and counterclockwise deflections, respectively, leading to the convergence and divergence of the flow field. Regardless of whether a coastal barrier exists or not, the outer radial tidal current field might emerge over certain topography. The responses of the radial tidal current field in this basin to the environmental variations such as coastline changes and bottom erosions were discussed. Results show that local protrusion near the focal point of the radial tidal current field will have limited effects on the location of the tidal system. However, a remarkable shift of the amphidromic point toward the entrance and central axis of this basin and a movement of the focal point of the radial tidal current field toward the entrance could be caused by the significant seaward coastline advance and submarine slope erosion.  相似文献   

5.
The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.  相似文献   

6.
Direct current observations in the Yellow Sea interior are very scarce due to intense fishing and trawling activities. Most previous studies on tides in the area were based on coastal measurements or satellite altimeter sea levels and have not been rigorously compared with direct measurements. In this paper, tidal currents are studied with current profiles from three bottom-moored Sontek Acoustic Doppler Profilers (ADPs) deployed in the southern Yellow Sea in summer of 2001 and 2003. The measured current series were dominated by tidal currents. Maximum velocities are between 40-80 cm/s at the mooring stations. M2 current is the most dominant primary tidal constituent, while MS4 and M4 are the most significant shallow water tides with much smaller amplitudes than the primary tides.  相似文献   

7.
A complete set of one-month Acoustic Doppler Profiler (ADP) current data at a station in the southern Yellow Sea (SYS) is analyzed using the rotary spectrum method. The results revealed different rotary properties between barotropic and baroclinic tidal currents. The barotropic and baroclinic tidal currents rotate elliptically counter-clockwise and clockwise, respectively. Meanwhile, baroclinic bottom tidal currents are almost along-isobath. The baroclinic cross-isobath velocities attenuate quickly at the bottom, implying important effects of bottom topography on the cross-isobath motions.  相似文献   

8.
The spatial-temporal characteristics of the barotropic tides and internal tides(ITs) northeast of Taiwan Island are examined, based on a 1-year mooring current observations from May 23, 2017 to May 19, 2018. The results of harmonic tidal analysis show that the barotropic tides are dominated by semidiurnal tides, which is mainly controlled by M_2 tidal components. Moreover, the vertical structures of diurnal and semidiurnal ITs show that the semidiurnal IT shows notable seasonal variation, whereas seasonal variations of the diurnal IT energy is not significant. The semidiurnal IT energy in winter half year is twice that in summer half year. The seasonal variation of semidiurnal IT is mainly modulated by the direction change of the current rather than by the topographic features and stratification. In summer(winter) half year cyclonic(anti-cyclonic) eddies meanly control at this point, so the flow direction is mainly in the southwest(northeast) direction, causing the background flow to flow along(perpendicular to) the isobath. When crossing the isobath, the ITs are generated by the interaction of the barotropic tide and the topography, resulting in the increase of the tidal energy in the winter half year.  相似文献   

9.
Current data from a moored Acoustic Doppler Current Profiler(ADCP) deployed at 69?30.155′N,169?00.654′W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper.Characteristics of tidal and residual currents are ob-tained with Cosine-Lanczos filter and cross-spectral analyses.The main achievements are as follows:1) Along with the local inertial frequency of 12.8 h,two other peaks at ~12-h and ~10-d dominate the time series of raw velocity;2) The M_2 dominates the 6 resolved tide constituents with significant amplitude variations over depth and the ratios of current speed of this constituent to that of the total tidal current are 54% and 47% for u and v components,respectively.All the resolved tidal constituents rotate clockwise at depth with the exception of MM and O1.The constituents of M_2 and S_2 with the largest major semi-axes are similar in eccentricity and orientation at deeper levels;3) The maximum of residual currents varies in a range of 20–30 cms~(-1) over depth and the current with lower velocities flow more true north with smaller magnitudes compared to the current in surface layer.The ~10 d fluctuation of residual current is found throughout the water column and attributed to the response of current to the local wind forcing,with an approximate 1.4 d lag-time at the surface level and occurring several hours later in the lower layer;4) Mean residual currents flow toward the north with the magnitudes smaller than 7 cms~(-1) in a general agreement with previous studies,which suggests a relatively weaker but stable northward flow indeed exists in the central Chukchi Sea.  相似文献   

10.
应用短期资料的潮流准调和分析方法,对深圳湾4测站两周日海流观测获得的表、中、底层海流资料进行分析,计算了4测站O_1、K_1、M_2、S_2、M_4、MS_4 6个主要分潮的潮流调和常数,并给出各测站在各层的潮流椭圆要素。计算结果表明:深圳湾主要为不规则半日潮流海区,浅水分潮流在总海流中的影响较大;站位1、2和4主要分潮流的北分量大于东分量,而站位3主要分潮流的北分量小于东分量。观测期间余流的流向主要呈北和东北向;最小余流速度出现在站位3;余流流速表层最大,中层次之,底层最小。整个海区潮流的可能最大流速表层在76~102cm/s之间;中层在80~106cm/s之间;底层在56~88cm/s之间。整个海区潮流表现出往复流的性质。  相似文献   

11.
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter. This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   

12.
INTRODUCTIONItisrecognizedthattherearetwoimportantprocessesthataffectthematerialfluxesintheEastChinaSea(ECS):oneisthematerialtransportprocessesrelatedtothefinematerial(modern)sedimentatthecenteroftheECSColdEddy,andtheotheristhesuspendedmatter(SM)fluxfrom…  相似文献   

13.
Tidal effects on temperature front in the Yellow Sea   总被引:5,自引:0,他引:5  
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring, thrives in summer, and fades in autumn as thermocline declines. TF intensity ⋎S T ⋎ is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   

14.
Observations made on the northern Portugal mid-shelf between May 13 and June 15,2002 were used to characterise the near-surface velocity during one upwelling season. It was found that in the surface mixed layer,the 'tidal current' was diurnal,but the tidal elevation was semi-diurnal. Both the residual current and the major axes of all tidal constituents were nearly perpendicular to the isobaths and the tidal current ellipses rotated clockwise;the major axis of the major tidal ellipse was about 3 cm s-1. The extremely strong diurnal current in the surface layer was probably due to diurnal heating,cooling,and wind mixing that induced diurnal oscillations,including the diurnal oscillation of wind stress. This is a case different from the results measured in the other layers in this area. The near-inertial spectral peaks occurred with periods ranging from 1 047 min to 1 170 min,the longest periods being observed in deeper layers,and the shortest in the surface layer. Weak inertial events appeared during strong upwelling events,while strong inertial events appeared during downwelling or weak subinertial events. The near-inertial currents were out of phase between 5 m and 35 m layers for almost the entire measurement period,but such relationship was very weak during periods of irregular weak wind. Strong persistent southerly wind blew from May 12 to 17 and forced a significant water transport onshore and established a strong barotropic poleward jet with a surface speed exceeding 20 cm s-1. The subinertial current was related to wind variation,especially in the middle layers of 15 m and 35 m,the maximum correlation between alongshore current and alongshore wind was about 0.5 at the 5 m layer and 0.8 at the 35 m layer. The alongshore current reacted more rapidly than the cross-shore current. The strongest correlation was found at a time lag of 20 h in the upper layer and of 30 h in the deeper layer. The wind-driven surface velocity obtained from the PWP model had maximum amplitude of about 7 cm s-1,corresponding to a wind stress at 0.1 Pa,and the horizontal velocity shear due to thermal wind balance had the order of 3 cm s-1. So the local wind and thermal wind would only explain a part of the strong surface velocity variations.  相似文献   

15.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

16.
Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs.Different forcing fields from 2080-2099 Special Report on Emissions Scenarios(SRES) B1,A1,and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System(ROMS).Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation,the Kuroshio Current in the East China Sea(ECS) is possibly strengthened under the global warming scheme.This mostly relates to local wind change,whereby the summer monsoon is strengthened and winter monsoon weakened.Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result.Downscaling 100 years’ temperature increments are comparable to the CCSM3,with a minimum in B1 scenario of 1.2-2.0°C and a maximum in A2 scenario of 2.5-4.5°C.More detailed temperature distributions are shown in the downscaling simulation.Larger increments are in the Bohai Sea and middle Yellow Sea,and smaller increments near the southeast coast of China,west coast of Korea,and southern ECS.There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer,and along the southern part of the Yellow Sea warm current in winter.There is enhancement of advective heat in the northern Yellow Sea in winter,related to the delicate temperature increment distribution.At 50 meter depth,the Yellow Sea cold water mass is destroyed.Our simulations suggest that in the formation season of the cold water mass,regional temperature is higher in the future and the water remains at the bottom until next summer.In summer,the mixed layer is deeper,making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.  相似文献   

17.
利用1/30°分辨率三维POM(Princeton Ocean Model)模式,以M2、S2、K1、O14大分潮作为潮汐边界条件,模拟南海西北部(105.5-115°E,16-23°N)海域正压潮,分析琼州海峡及其附近区域正压潮能通量分布特征。结果表明,研究海域内M2分潮和全日潮都是顺时针传入北部湾,然后自西向东通过琼州海峡,直至琼州海峡东口;计算所得穿过琼州海峡中部(110°E断面)能通量为M2,0.2GW或m1,0.47GW;穿过北部湾湾口(18.5°N断面)能通量为M2,1.0GW或m1,2.5GW;海南岛西部和琼州海峡处潮能耗散最强。  相似文献   

18.
ImODUrmNJ0GFS(JointGlobaldrinFLuxStudy:l99()-2OO()isaworldwidenawhprogramfocusingontheoasns'buharolewhentheC0,prmtageintheairincreasesandtheatmOspheretemPeraturebo.ThefluxofsuspendedrnateriaIs(SM)intheEastChinaScaisboortanttotheworld'srnatterchaltfon,astheChangiiangRiver,thelargestriverinAsia,dischargesbillionsoftOnsoftheidWhterintoit.ManystudAshavebocondtalonSMmovementncarChina'scoastalseas.Yang(l983)studiedthefine%rainedsededtSfromtheChangiiangandHuangheRiversWhileQin(l983)fo…  相似文献   

19.
Based on the current measurement data from the R/V Ryofu Maru of JMA in the equatorial area along 137°E (1972–83) and 155°E (1972–79) the structures of the zonal velocity of the Equatorial Undercurrent (EUC) and the North Equatorial Countercurrent (NECC) and their variations are systematically analyzed in detail. At 155°E, the current at the equator and 100–300 m depth was a typical eastward EUC, it intensified in 1973–75, i.e., in the non-El Niño period. While the corresponding current at 137°E was mostly westward, and the origin of the EUC shifted to north of the equator around 0.5–1.5°N owing to the influence of the New Guinea Coast. The EUC origin disappeared in early July, 1982. Comparing with the EUC disappearance at 159°W, the average speed of an eastward travelling wave would be~1.1m/s. The velocity core of the NECC at 137°E generally shifted northward in winter and southward in summer, and was stronger in summer and weaker in winter. The fluctuations of the NECC were closely related to those of the wind stress curl over the region 2–10°N, 160°E–150°W.  相似文献   

20.
Coherent and incoherent internal tides(CITs and ICITs) in the southern South China Sea were investigated from two sets of _18-month mooring current records. The CITs were mainly composed of diurnal Q _1, O _1, P _1 and K _1 and semidiurnal M_2. The observed diurnal internal tides(ITs) were more coherent than the semidiurnal constituents. Coherent diurnal variance accounted for approximately 58% of the diurnal motion, whereas semidiurnal tides contained a much smaller fraction(35%) of coherent motion. The ICITs mainly consisted of motion at non-tidal harmonic frequencies around the tidal frequency, and showed clear intermittency. The modal decomposition of CITs and ICITs showed that CITs were dominated by mode-1, whereas mode-1 and higher modes in ICITs signals showed comparable amplitudes. CITs and ICITs accounted for approximately 64% and 36% of the total kinetic energy of internal tides, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号