首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radial tidal current field in a semi-enclosed rectangular basin: formation and evolution
Authors:Xuesheng Qian  Yongping Chen  Changkuan Zhang  Yi Pan  Himangshu Das
Institution:1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing, 210098, China
3. Department of Civil and Environmental Engineering, Jackson State University, Jackson, 39217, USA
Abstract:The radial tidal current field accounts for the formation of the radial sand ridges in the South Yellow Sea. Understanding the formation and evolution of this radial tidal current field is vital to assessing the morphodynamic features in the area. A semi-enclosed rectangular basin with and without a coastal barrier was schematized from the topography of the Bohai Sea and Yellow Sea. The 2D tidal current field in this basin was simulated using the DELFT3D-FLOW model. The concept of tidal wave refraction, which highlights the effect of the sloped or stepped submarine topography on the propagation of the tidal waves, was introduced to explain the formation of the radial tidal current field. Under the effect of tidal wave refraction, co-phase lines of the counterclockwise rotating tidal wave and incident tidal wave are transformed into clockwise and counterclockwise deflections, respectively, leading to the convergence and divergence of the flow field. Regardless of whether a coastal barrier exists or not, the outer radial tidal current field might emerge over certain topography. The responses of the radial tidal current field in this basin to the environmental variations such as coastline changes and bottom erosions were discussed. Results show that local protrusion near the focal point of the radial tidal current field will have limited effects on the location of the tidal system. However, a remarkable shift of the amphidromic point toward the entrance and central axis of this basin and a movement of the focal point of the radial tidal current field toward the entrance could be caused by the significant seaward coastline advance and submarine slope erosion.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号