首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of a population synthesis code and by constructing a simple toy model of dust produced by asymptotic giant branch(AGB) stars, common envelope(CE) ejecta and binary merger ejecta, we estimate the dust product rates(DPRs) of these processes in the Milky Way. The total DPR from AGB stars is~ 6.7 × 10-4M yr-1, in which about 73% of dust grains are carbon, 24% are silicates and 3% are iron. The total DPR from CE ejecta is ~ 4.2 × 10-4M yr-1, in which about 83% of dust grains are silicates, about 12% are carbon and 5% are iron.The DPR from binary merger ejecta is less than 1/3 that from AGB stars or CE ejecta,and it could even be negligible under certain circumstances. Therefore, compared with AGB stars and CE ejecta, the contribution of dust produced by binary merger ejecta to total dust grains in the Milky Way is smaller or can be negligible.  相似文献   

2.
3.
Using a population synthesis code, we have investigated the formation of symbiotic systems in which the hot component is a main-sequence star that is accreting matter from the cool component via Roche lobe overflow (RLOF). The RLOF can be divided into two cases: dynamically unstable and stable. In the first case, the birthrate of symbiotic stars is 0.056 yr-1 or 0.045 yr-1 depending on different assumptions; in the stable RLOF case, it is 0.002 yr-1 or 0.005 yr-1. The number of symbiotic stars with main-sequence accretors and unstable RLOF in our galaxy is about 5, that with stable RLOF is about 60 to 280. Comparison between our results with those of Yungelson et al. shows that symbiotic stars with MS accretors make only a small contribution ((?) 8%) to the whole population of symbiotic stars in the Galaxy.  相似文献   

4.
We show that the explosive transition of the neutron star(NS)to a quark star(QS)(a Quark Nova)in Cassiopeia A(Cas A)a few days following the supernova(SN)proper can account for several of the puzzling kinematic and nucleosynthetic features that are observed.The observed decoupling between Fe and44Ti and the lack of Fe emission within44Ti regions is expected in the QN model owing to the spallation of the inner SN ejecta by relativistic QN neutrons.Our model predicts the44Ti to be more prominent to the NW of the central compact object(CCO)than in the SE and little of it along the NE-SW jets,in agreement with Nu Star observations.Other intriguing features of Cas A are addressed,such as the lack of a pulsar wind nebula and the reported few percent drop in the CCO temperature over a period of 10 yr.  相似文献   

5.
It is conventionally thought that the state equation of dense matter softens and thus cannot result in high maximum mass if pulsars are quark stars and that a recently discovered 2M⊙ pulsar (PSR J1614-2230) may make pulsars unlikely to be quark stars. However, this standard point of view would be revisited and updated if quark clustering could occur in cold quark matter because of the strong coupling be- tween quarks at realistic baryon densities in compact stars. It can be argued that the state equation of...  相似文献   

6.
We investigate the masses of glitching pulsars in order to constrain their equation of state(EOS). The observations of glitches(sudden jumps in rotational frequency) may provide information on the interior physics of neutron stars. With the assumption that glitches are triggered by superfluid neutrons, the masses of glitching neutron stars can be estimated using observations of maximum glitches.Together with the observations of thermal emission from glitching pulsars Vela and J1709–4429, the slope of symmetry energy and incompressibility of nuclear matter at saturation density can be constrained.The slope of symmetry energy L should be larger than 67 MeV while the lower limit of incompressibility for symmetric nuclear matter K_0 is 215 MeV. We also obtain a relationship between L and K_0:6.173 MeV + 0.283 K_0≤ L ≤ 7.729 MeV + 0.291 K_0. The restricted EOSs are consistent with the observations of 2-solar-mass neutron stars and gravitational waves from a binary neutron star inspiral.  相似文献   

7.
Chaos is universal phenomenon in the nature. Some scientists think that chaos theory is the third revolution in physics of this century, following relativity theory and quantum mechanics. The δSct type stars are pulsating variable stars with light amplitudes in Ⅴ from 0~m.003to 0~m.9 and periods from 0~d.01 to 0~d.2. The spectral types are A0-F5Ⅲ-Ⅴ. Some stars such as ρ Puppis and AD CMi show light curves which repeat beautifully from cycle to cycle.The light curves of many stars, especially the small-amplitude variables, often appear vari-  相似文献   

8.
Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients(ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to≈10-2M⊙yr-1for solar type stars, and up toion≈1 M-⊙yr1for very massive stars. We speculate that magnetic fields amplified in such extreme condits might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.  相似文献   

9.
We have constructed a catalog containing the best available astrometric,photometric, radial velocity and astrophysical data for mainly F-type and G-type stars(called the Astrometric Catalog associated with Astrophysical Data, ACAD). This contains 27 553 records and is used for the purpose of analyzing stellar kinematics in the solar neighborhood. Using the Lindblad-Oort model and compiled ACAD, we calculated the solar motion and Oort constants in different age–metallicity bins. The evolution of kinematical parameters with stellar age and metallicity was investigated directly. The results show that the component of the solar motion in the direction of Galactic rotation(denoted S2) linearly increases with age, which may be a consequence of the scattering processes, and its value for a dynamical cold disk was found to be 8.0 ± 1.2 km s-1. S2 also linearly increases with metallicity, which indicates that radial migration is correlated to the metallicity gradient. On the other hand, the rotational velocity of the Sun around the Galactic center has no clear correlation with ages or metallicities of stars used in the estimation.  相似文献   

10.
The young shell-type supernova remnant RCW 103 has peculiar properties in the X-ray morphology obtained with Chandra.The southeastern shell is brighter in the X-rays,and the curved border of the shell in this region is flatter than the other part.We investigate the formation of the peculiar periphery of the supernova remnant RCW 103 using 3D hydrodynamical simulation.Assuming that the supernova ejecta has been evolved in the medium with a density gradient,the detected shape of the periphery can be generally reproduced.For RCW 103,with the ejecta mass of 3.0 M,the density of the background material of 2.0 cm-3,and a gradient of 3.3-4.0 cm-3pc-1,the X-ray periphery can be generally reproduced.The simulation turned out that the asymmetry of the SNR RCW 103 is mainly due to the inhomogeneous medium with a density gradient.  相似文献   

11.
Distributions of Neutron Exposures in AGB Stars and the Galaxy   总被引:1,自引:0,他引:1  
Based on the s-process nucleosynthesis model with the 13C(α,n)16O reaction oc- curring under radiative conditions in the interpulse phases, we investigate the characteristics of the distribution of neutron exposure in low-mass Asymptotic Giant Branch (AGB) stars. We introduce a new concept, the distribution of neutron exposures of the Galaxy (NEG), to study the chemical evolution characteristics of the Galaxy for s-process elements. Using a chemical evolution model of the Galaxy, we develop a model for the NEG and obtain the evolution results of the NEG in different epochs. The present results appear to reasonably re- produce the distribution of neutron exposures of the solar system (hereafter NES). The main component and the strong component in the NES are built up in different epochs. The strong component of the s-process is mainly synthesised in the low-mass and metal-poor AGB stars, and the main component is produced by the s-process in the low-mass AGB stars with higher metallicities.  相似文献   

12.
This paper presents Charge-Coupled Device time-series photometric observations of the open cluster NGC 1582 and its surrounding field with Johnson B,V and R filters by using the Nanshan 1 m telescope administered by Xinjiang Astronomical Observatory.19 variable stars and three variable candidates were detected in a 45′×48.75′ field around the cluster.12 of the variable stars are newly-discovered variable objects.The physical properties,classifications and memberships of these 22 objects are studied through their light curves,their positions on the color-magnitude diagram and with archival data from the Naval Observatory Merged Astrometric Dataset.Among these objects,five are eclipsing binary systems,six are pulsating variable stars including one known S Scuti star and one newly-discovered RR Lyrae star.The distance to the RR Lyrae star is estimated to be 7.9 ± 0.3 kpc,indicating that the star is located far behind the cluster.Four variable stars are probable members of the cluster,and 13 of the 22 objects are confirmed to be field stars.  相似文献   

13.
We apply the jet-powered ILOT scenario to two recently studied intermediate luminosity optical transients(ILOTs),and find the relevant shell mass and jets' energy that might account for the outbursts of these ILOTs.In the jet-powered ILOT scenario,an accretion disk around one of the stars of a binary system launches jets.The interaction of the jets with a previously ejected slow shell converts kinetic energy to thermal energy,part of which is radiated away.We apply two models of the jet-powered ILOT scenario.In the spherical shell model,the jets accelerate a spherical shell,while in the cocoon toy model the jets penetrate into the shell and inflate hot bubbles,the cocoons.We find consistent results.For the ILOT(ILRT:intermediate luminosity red transient) SNhunt120 we find the shell mass and jets' energy to be Ms■0.5-1 M_☉ and E_(2 j)■5×10~(47) erg,respectively.The jets' half opening angle is α_j■30°-60°.For the second peak of the ILOT(luminous red nova) AT 2014 ej we find these quantities to be M_s1-2 M_☉ and E_(2 j)1.5×10~(48) erg,with αj■20°-30°.The models cannot tell whether these ILOTs were powered by a stellar merger that leaves one star,or by mass transfer where both stars survived.In both cases the masses of the shells and energies of the jets suggest that the binary progenitor system was massive,with a combined mass of M_1+M_210 ■M_☉.  相似文献   

14.
We simulate the evolution of supernova remnants(SNRs) in a strong magnetic field. Usually,supernovae explode in a normal interstellar medium with magnetic field of no more than 50 μG, which has been well studied. However, the surrounding magnetic field will be much stronger in some situations, such as in a galactic center. Therefore, we try to explore these situations. The simulations show that a strong magnetic field of 1 mG will align the motion of ejecta in a way similar to a jet. The ejecta propagating perpendicularly to the magnetic field will be reflected and generate a strong reverse shock. When the reverse shock converges in the explosion center, it will more or less flow along the central magnetic field. Finally,most of the ejecta will propagate parallel to the magnetic field.  相似文献   

15.
The age of the Galactic halo is a critical parameter that can constrain the origin of the stellar halo.In general, the Galactic stellar halo is believed to be very old. However, different independent measurements and techniques based on various types of stars are required so that the age estimates of the Galactic halo are accurate, robust, and reliable. In this work, we provide a novel approach to determine the age of the halo with turn-off stars. We first carefully select 63 field halo turn-off stars from the literature. Then, we compare them with the GARSTEC model, which takes the process of atomic diffusion into account in the B- V vs. metallicity plane. Finally, we run Monte Carlo simulations to consider the uncertainty of the color index and obtain the age of 10.5 ± 1.5 Gyr. This result is in agreement with previous studies. Future works are needed to collect more turn-off samples with more accurate photometry to reduce the uncertainty of the age.  相似文献   

16.
Multi-color light curves of V1197 Her were obtained with the 2.4 meter optical telescope at the Thai National Observatory and the Wilson-Devinney(W-D) program was used to model the observational light curves. The photometric solutions reveal that V1197 Her is a W-subtype shallow contact binary system with a mass ratio of q = 2.61 and a fill-out factor of f = 15.7%. The temperature difference between the primary star and secondary star is only 140 K in spite of the low degree of contact, which means that V1197 Her is not only in geometrical contact configuration but is also already under thermal contact status.The orbital inclination of V1197 Her is as high as i = 82.7?, and the primary star is completely eclipsed at the primary minimum. The totally eclipsing characteristic implies that the determined physical parameters are highly reliable. The masses, radii and luminosities of the primary star(star 1) and secondary star(star2) are estimated to be M1 = 0.30(1) M_⊙, M2 = 0.77(2) M_⊙, R1 = 0.54(1) R_⊙, R2 = 0.83(1) R_⊙,L1 = 0.18(1) L_⊙and L2 = 0.38(1) L_⊙. The evolutionary statuses of the two component stars are drawn in the Hertzsprung-Russell diagram, showing that the less massive but hotter primary star is more evolved than the secondary star. The period of V1197 Her is decreasing continuously at a rate of d P/dt =-2.58 ×10-7 day · year-1, which can be explained by mass transfer from the more massive star to the less massive one at a rate of dM_2/dt=-1.61 × 10~(-7) M_⊙year~(-1). The light curves of V1197 Her are reported to show the O'Connell effect. Thus, a cool spot is added to the more massive star to model the asymmetry in the light curves.  相似文献   

17.
Using a non-local and time-dependent theory of convection, we have cal- culated the linear non-adiabatic oscillations of the radial and low-degree F-p39 modes for evolutionary models from the main sequence to the asymptotic giant branch for stars with solar abundance (X = 0.70, Z = 0.02) in the mass range of 0.6-3.0 3//o. The results show that iow luminosity cool stars tend to be solar-like oscillators, whose low-order modes are stable, but intermediate and high order p-modes are pulsationally unstable; their unstable modes have a wide range in frequency and small values for amplitude growth rates. For stars with increasing luminosity and therefore lower tem- perature, the unstable modes shift towards lower orders, the corresponding range of frequency decreases, and the amplitude growth rate increases. High luminosity red gi- ant stars behave like typical Mira-like oscillators. The effects of the coupling between convection and oscillations on pulsational instability have been carefully analyzed in this work. Our research shows that convection does not simply act as a damping mechanism for oscillations, and the complex nature of the coupling between convec- tion and oscillations makes turbulent convection sometimes behave as damping, and sometimes as excitation. Such a picture can not only naturally account for the red edge of the instability strip, but also the solar-like oscillations in low luminosity red stars and Mira-like ones in high luminosity red giants.  相似文献   

18.
Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multiepoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions,are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with Teff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.  相似文献   

19.
Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk.  相似文献   

20.
This paper presents a new approach to analyzing the change of cometary brightness.In our considerations,we assume that astronomical silicates(dust agglomerates)and gas are present in the coma.This assumption is a consequence of the analysis of the result observed during the Rosetta mission to comet67 P/Churyumov-Gerasimenko(abbreviated 67 P/Ch-G).The dimensions of these agglomerates can be up to several centimeters.However,the large ones are few compared to particles with dimensions of several micrometers.This paper presents the results of calculations on the change in hypothetical comet brightness as a result of its outburst.The calculations take into account the percentage of carbonaceous particles and silicates rich in magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号