首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We find that five sources listed in the new carbon star catalog are not really carbon-rich objects but oxygen-rich stars, because they all have the prominent 10μm silicate features in absorption and the 1612MHz OH maser emission or/and the SiO molecular features. These objects were considered as carbon stars in the catalog based only on their locations in the infrared two-color diagram. Therefore to use the infrared two-color diagram to distinguish carbon-rich stars from oxygenrich stars must be done with caution, because, in general, it has only a statistical meaning.  相似文献   

2.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

3.
4.
It is generally accepted that the presence of a hot magnetic corona provides the source of X-ray emission in cool stars. With this connection one could expect to see the variation of magnetic flux in the activity cycle of a star mirrored by a similar variation in the stars X-ray emission. Using magnetic maps produced from flux emergence and transport simulations and assuming a potential field for the corona, we can extrapolate the coronal magnetic field and hence calculate the variation of the X-ray emission. We consider three types of activity cycle that successfully reproduce the pattern of intermingled magnetic flux at high latitudes, a feature observed with Zeeman–Doppler imaging. The three different cycles take the form of (1) an enhanced butterfly pattern where flux emergence is extended to a latitude of 70°, (2) an extended emergence profile as before but with an overlap of 4 yr in the butterfly diagram and (3) where no butterfly diagram is used. The cyclic variation in the X-ray emission is around two orders of magnitude for cases (1) and (3), but less than one order of magnitude for case (2). For all three cases, the rotational modulation of the X-ray emission is greatest at cycle minimum, but the emission measure weighted density varies little over the cycle. For cases (1) and (2) the fraction of the total flux that is open (along which a wind can escape) varies little over the cycle, but for case (3) this is three times larger at cycle minimum than at maximum. Our results clearly show that although magnetic cycles may exist for stars they are not necessarily observable in the X-ray emission.  相似文献   

5.
Observations of rapidly rotating solar-like stars show a significant mixture of opposite-polarity magnetic fields within their polar regions. To explain these observations, models describing the surface transport of magnetic flux demand the presence of fast meridional flows. Here, we link subsurface and surface magnetic flux transport simulations to investigate (i) the impact of meridional circulations with peak velocities of  ≤125 m s−1  on the latitudinal eruption pattern of magnetic flux tubes and (ii) the influence of the resulting butterfly diagrams on polar magnetic field properties. Prior to their eruption, magnetic flux tubes with low field strengths and initial cross-sections below  ∼300 km  experience an enhanced poleward deflection through meridional flows (assumed to be polewards at the top of the convection zone and equatorwards at the bottom). In particular, flux tubes which originate between low and intermediate latitudes within the convective overshoot region are strongly affected. This latitude-dependent poleward deflection of erupting magnetic flux renders the wings of stellar butterfly diagrams distinctively convex. The subsequent evolution of the surface magnetic field shows that the increased number of newly emerging bipoles at higher latitudes promotes the intermingling of opposite polarities of polar magnetic fields. The associated magnetic flux densities are about 20 per cent higher than in the case disregarding the pre-eruptive deflection, which eases the necessity for fast meridional flows predicted by previous investigations. In order to reproduce the observed polar field properties, the rate of the meridional circulation has to be of the order of 100 m s−1, and the latitudinal range from which magnetic flux tubes originate at the base of the convective zone (≲50°) must be larger than in the solar case (≲35°).  相似文献   

6.
7.
We present the broad-band noise structure of selected anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) in the 2–60 keV energy band. We have analysed Rossi X-Ray Timing Explorer Proportional Counter Array archival light curves for four AXPs and one SGR. We detect that the persistent emission of these sources shows band-limited noise at low frequencies in the range 0.005–0.05 Hz varying from 2.5 to 70 per cent integrated rms in times of prolonged quiescence and following outbursts. We discovered band-limited red noise in 1E 2259+586 only for ∼2 yr after its major 2002 outburst. The system shows no broad-band noise otherwise. Although this rise in noise in 1E 2259+586 occurred following an outburst which included a rotational glitch, the other glitching AXPs showed no obvious change in broad-band noise, thus it does not seem that this noise is correlated with glitches. The only source that showed significant variation in broad-band noise was 1E   1048.1−5937  , where the noise gradually rose for 1.95 yr at a rate of ∼3.6 per cent per year. For this source the increases in broad-band noise was not correlated with the large increases in persistent and pulsed flux, or its two short SGR-like bursts. This rise in noise did commence after a long burst, however, given the sparsity of this event, and the possibility that similar bursts went unnoticed the trigger for the rise is noise in 1E   1048.1−5937  is not as clear as for 1E 2259+586. The other three sources indicate a persistent band-limited noise at low levels in comparison.  相似文献   

8.
We applied the aton evolutionary code to the computation of detailed grids of standard (non-rotating) and rotating pre-main sequence (PMS) models and computed their adiabatic oscillation spectra, with the aim of exploring the seismic properties of young stars. As, until now, only a few frequencies have been determined for ∼40 PMS stars, the way of approaching the interpretation of the oscillations is not unique. We adopt a method similar to the matching mode method by Guenther and Brown making use, when necessary, also of our rotating evolutionary code to compute the models for PMS stars. The method is described by a preliminary application to the frequency spectrum of two PMS stars (85 and 278) in the young open cluster NGC 6530. For the Star 85, we confirm with self-consistent rotating models, previous interpretation of the data, attributing three close frequencies to the mode   n = 4, l = 1  and   m = 0  , +1 and −1. For the Star 278, we find a different fit for the frequencies, corresponding to a model within the original error box of the star, and dispute the possibility that this star has a T eff much cooler that the red boundary of the radial instability strip.  相似文献   

9.
Summary Stars of nearly all spectral types and luminosity classes are surrounded by tenuous high-temperature (T106-107K) coronae, which emit most of their radiation in the soft X-ray part of the spectrum. This paper reviews our present observational knowledge and theoretical understanding of stellar coronae, as has emerged from the extensive observations carried out with theEinstein and EXOSAT Observatories. We argue that different physical mechanisms are likely to be responsible for coronal emission in different parts of the HR diagram and we discuss the principal scenarios that have been proposed to account for the data. We show that in spite of the enormous progress made during the past decade, our understanding of stellar coronal emission remains incomplete and largely phenomenological. We outline major unsolved problems to be addressed by future space missions.  相似文献   

10.
11.
We present high-resolution spectroscopic observations of 21 B-type stars, selected from the Edinburgh–Cape Blue Object Survey. Model atmosphere analyses confirm that 14 of these stars are young, main-sequence B-type objects with Population I chemical compositions. The remaining seven are found to be evolved objects, including subdwarfs, horizontal branch and post-AGB objects. A kinematical analysis shows that all 14 young main-sequence stars could have formed in the disc and subsequently been ejected into the halo. These results are combined with the analysis of a previous subsample of stars taken from the Survey. Of the complete sample, 31 have been found to be young, main-sequence objects, with formation in the disc, and subsequent ejection into the halo, again being found to be a plausible scenario.  相似文献   

12.
13.
This work provides a general vision of the limits of validity of the Frequency Ratio Method applied to the g‐mode pulsators in asymptotic regime, the γ Doradus stars. In particular, the work is mainly focused on the role of rotation which is found one of the most important source of uncertainty of the method. The particular case of the moderately rotating γ Doradus star HD48501 is discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We monitored the light curves of 22 weak-line T Tauri stars (WTTSs) discovered among the X-ray sources in the field of the Taurus-Auriga cloud. For 12 of the 22 WTTSs photometric periodic variability is confirmed and their rational periods are determined using Phase Dispersion Minimization (PDM) and Fourier analysis. Most of them are found to have periods shorter than one day. This gives further evidence for the spin up of solar-type stars predicted by the models of angular momentum evolution of pre-main sequence stars.  相似文献   

15.
基于对9颗类太阳色球活动恒星高信噪比的高色散光谱观测, 测量了这些恒星锂线(入 = 6707.8 A'')的等值宽度, 计算了这些恒星表层锂元素丰度. 通过研究这些类太阳色球活动恒星锂丰度和X射线光度之间的关系, 发现X射线光度 强的类太阳色球活动恒星锂丰度值大于X射线较弱的恒星. 也就是说活动性较强的类太阳色球活动恒星其锂丰度较高, 活动性较弱的类太阳色球活动恒星其锂丰度较低. 考虑到主序的类太阳恒星锂元素和恒星自转速度随着恒星年龄的增加逐渐减少, 以及随着类太阳色球活动恒星自转速度的减小, 色球活动又逐渐变弱. 因此类似于锂丰度, 类太阳色球活动恒星自转速度的大小和恒星的 活动水平也同样可以表明恒星的年龄.  相似文献   

16.
The continuum emission of stellar flares in UV and visible bands can be enhanced by two or even three orders of magnitude relative to the quiescent level and is usually characterized by a blue colour. It is difficult for thermal atmospheric models to reproduce all these spectral features. If the flaring process involves the acceleration of energetic electrons which then precipitate downwards to heat the lower atmosphere, collisional excitation and ionization of ambient hydrogen atoms by these non-thermal electrons could be important in powering the continuum emission. To explore such a possibility, we compute the continuum spectra from an atmospheric model for a dMe star, AD Leo, at its quiescent state, when considering the non-thermal effects by precipitating electron beams. The results show that if the electron beam has an energy flux large enough (for example, ℱ1∼1012 erg cm−2 s−1), the U -band brightening and, in particular, the U − B colour are roughly comparable with observed values for a typical large flare. Moreover, for electron beams with a moderate energy flux ℱ1≲1011 erg cm−2 s−1, a decrease of the emission at the Paschen continuum appears. This can explain at least partly the continuum dimming observed in some stellar flares. Adopting an atmospheric model for the flaring state can further raise the continuum flux, but it yields a spectral colour incomparable with observations. This implies that the non-thermal effects may play the chief role in powering the continuum emission in some stellar flares.  相似文献   

17.
Understanding transport processes inside stars is one of the main goals of asteroseismology. Chemical turbulent mixing can affect the internal distribution of μ near the energy generating core, having an effect on the evolutionary tracks similar to that of overshooting. This mixing leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behavior of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We describe the effects of convective overshooting and turbulent mixing on the frequencies of gravity modes in B‐type main sequence stars. In particular, the cases of p‐g mixed modes in β Cep stars and high‐order modes in SPBs are considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
20.
We present measurements of the rotation rates of individual starspots on the rapidly rotating young K0 dwarf AB Doradus, at six epochs between 1988 December and 1996 December. The equatorial rotation period of the star decreased from 0.5137 to 0.5129 d between 1988 December and 1992 January. It then increased steadily, attaining a value of 0.5133 d by 1996 December. The latitude dependence of the rotation rate mirrored the changes in the equatorial rotation rate. The beat period between the equatorial and polar rotation periods dropped from 140 to 70 d initially, then rose steadily. The most rigid rotation, in 1988 December, occurred when the starspot coverage was at a maximum. The time-dependent part of the differential rotation is found to have     , which should alter the oblateness of the star enough to explain the period changes observed in several close binaries via the Applegate mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号