首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
江苏臭氧污染特征及其与气象因子的关系   总被引:3,自引:0,他引:3  
本文利用2013—2017年江苏70个环境监测站资料和13个国家气象观测站常规观测资料,研究江苏臭氧污染特征及其与气象因子的关系。结果表明:江苏臭氧质量浓度和超标率逐年增长,其空间分布特征由东部沿海城市大于西部内陆城市逐渐转为东西部城市差异不明显,南部城市超标率总体高于北部;4—9月臭氧质量浓度处于较高水平,夏季超标占一半以上;日变化呈"单峰单谷"型,15时(北京时间)前后超标率最大,O_(3-8 h)较O_(3-1 h)峰值推后3—4 h;O_3对空气质量不达标的贡献率呈逐年上升趋势;臭氧质量浓度与颗粒物和前体物NO_x日变化呈反相关,且存在"周末效应"。江苏地区臭氧质量浓度总体与气温正相关,相对湿度负相关,气温高于25℃、相对湿度30%~50%区间、风速低于4 m·s~(-1)以下易出现高浓度臭氧;苏南的城市主要在东南风向对应较高的值,而苏北城市多在西南风向对应的较高臭氧质量浓度值。  相似文献   

2.
利用广东省中山市2015—2019年的地面臭氧浓度及气象观测数据,分析了中山市近年来臭氧超标与气象条件的关系。结果表明,中山市2015—2019年臭氧超标天数从22天增加至66天,臭氧年评价值增长36%,中度污染以上天数占超标天数比例从9.1%增长至36.4%。臭氧超标主要集中在8—11月,其中9月超标天数最多。夏秋季节臭氧超标主要发生在气温高、湿度低、太阳辐射强、日间10—14时无明显降水、吹北风的气象条件下,臭氧的污染潜在源区主要位于中山西部到北部的城市。风向和气温是臭氧超标最重要的指标,夏、秋季日间吹北风且日最高气温在33 ℃或以上时超标率分别达到89.1%和78.6%。2017年和2019年在相同的最高温、相对湿度、太阳辐射强度、降水和风速条件下的臭氧超标率均远高于2015年。当臭氧起始浓度在10 μg/m3以下、11~30 μg/m3及30 μg/m3以上时,夏(秋)季从起始浓度达到超标分别用时7.1(6.9) h、6.2(6.2) h和5.8(5.9) h,相应气温上升7.2(7.1) ℃、5.8(5.8) ℃和4.7(5.1)℃,起始浓度增大时,超标耗时和气温变化均呈减小趋势。   相似文献   

3.
利用广东省惠州市2013—2018年逐日、逐时的环境和气象资料,研究了惠州市春季(3—5月)臭氧污染天气特征,并对2013年3月5—9日的一次臭氧污染过程进行了分析。结果表明:(1)惠州市春季臭氧质量浓度和臭氧污染日2015年起呈上升趋势,O_3-8 h平均质量浓度为92.0μg/m^3,年平均出现日数为4 d。(2)春季臭氧污染日出现在天气晴朗干燥、气温较高、日照充足且云量较少的情况下,臭氧污染日偏西风出现频率为22.4%,与无污染日相比偏高了13.1%;东南风出现频率为39.6%,与无污染日相比基本一致。(3)2013年3月5—9日臭氧污染期间,冷空气影响后惠州市出现晴朗干燥天气,有利于臭氧生成;地面到850 hPa均吹偏西风,惠州处于珠三角东侧,吹偏西风时处于城市群下风向,存在区域污染输送的可能。  相似文献   

4.
《高原气象》2021,40(4):954-964
汾渭平原作为中国大气环境治理的第三大重点区域,由挥发性有机物和氮氧化物等前体物排放增加导致光化学反应加剧进而引发的近地面臭氧(O_3)污染已成为迫切需要面对的关键问题。本文基于汾渭平原11个重点城市2015-2019年近地面大气O_3及前体物观测数据结合同期气象监测资料,总结归纳其时空变化特征,利用Global Moran's I和Getis-Ord Gi*指数方法分析空间集聚效应和冷热点区域,运用KZ(Kolmogorov-Zurbenko)滤波方法揭示了不同时间尺度的排放和气象环境对O_3浓度变化的影响。结果表明:近5年汾渭平原O_3污染以轻度为主,超标率逐年增加且夏季最高春季次之,其中6月超标37%以上,前体物中NO_2年际差异不大CO浓度逐年减少。空间分布上,O_3空间集聚特征逐年增强,高浓度聚集区分布在临汾、运城、三门峡和洛阳的三角区域。从气象环境的影响看,O_3浓度主要受到前体物排放及气象条件的季节分量和短期分量影响,贡献率分别达到40%和24%。原始序列及各分量除与气压成负相关外,与气温和日照均呈显著正相关且对不同区域影响较为一致,而相对湿度和风速对各分量的影响具有显著的区域性差异。  相似文献   

5.
利用2013—2015年廊坊市环境监测数据及同期气象资料,采用相关分析等统计方法,分析廊坊市臭氧浓度的日变化特征、超标规律以及气象因素对其的影响。结果表明:臭氧浓度的日变化特征明显,为"1谷1峰"型,每日07:00—08:00左右达到谷值,15:00—16:00达到峰值;臭氧超标只集中出现在春季、夏季与秋季的部分月份,1—3月、11—12月不存在臭氧超标情况,超标现象日变化特征明显,主要出现在11:00—20:00。气象因素对臭氧浓度的影响很大,风向为西南风与东南风时臭氧超标率较高;臭氧超标时,地面天气类型主要为高压后部或高压底部,高空天气类型主要为脊前西北气流或平直西风环流;臭氧浓度与相对湿度呈显著负相关,与温度、日照呈显著正相关。  相似文献   

6.
选取中国汾渭平原地区作为研究对象,利用MODIS、OMI和CALIPSO多源卫星遥感资料,同时结合环境监测国控站点污染6要素等逐小时地面环境监测数据以及能见度、霾天气现象记录等地面气象要素资料,综合分析了2013—2018年秋冬季汾渭平原空气质量状况、气溶胶的组分,探讨了卫星遥感气溶胶光学厚度(Aerosol Optical Depth,AOD)与地面污染物浓度的关系,并结合中国气象局化学天气预报系统-EMI评估模式(CUACE-EMI)资料对气象条件和污染减排影响进行评估。结果表明:11个代表城市中有6个城市秋冬季有接近或超过一半的时刻处于污染状态,且污染发生时,各代表城市大多数时刻处于中度及其以上污染级别;三门峡、临汾、运城和西安是霾和重度霾高发的城市,其重度霾爆发频率高达11.63%—14.78%;汾渭平原秋冬季首要污染物为PM2.5和PM10,以污染沙尘、沙漠沙尘和烟尘为主,出现频率分别为36.24%、25.14%和22.96%;MODIS AOD与空气质量指数(Air Quality Index,AQI)、PM2.5、PM10质量浓度之间的相关系数分别为0.72、0.70和0.64;汾渭平原2018年气象条件的变化使PM2.5浓度较2013年、2014年、2015年、2016年和2017年同期上升了17.06%、1.58%、4.34%、11.25%和5.75%,减排措施使PM2.5浓度较2013年、2014年、2015年、2016年和2017年同期分别下降了8.74%、28.01%、4.93%、3.16%和42.62%。  相似文献   

7.
南昌市环境空气臭氧污染现状分析   总被引:2,自引:0,他引:2  
利用南昌市省外办环境空气监测点2003—2006年臭氧监测资料,使用综合污染指数法和国家《环境空气质量标准》进行分析评价。分析结果表明,南昌市省外办监测点环境空气中臭氧污染已经达到一定程度,2006年臭氧年日均值达0.203 mg/m3,年日均值超标率为12.63%;臭氧污染指数为2.03,污染负荷高达53.88%,比目前最为关注的污染物(可吸入颗粒物)污染负荷高39.07%。臭氧已成为城市环境空气中的主要污染物之一,尤其是每年的9月和10月,其污染更为严重。建议全省各城市积极创造条件开展环境空气臭氧监测,并纳入必测项目参加评价;环保部门应加强与气象部门的合作,科学分析江西环境空气臭氧污染原因,提出防治措施。  相似文献   

8.
利用2014—2016年银川市区近地面臭氧质量浓度观测资料、国家基准气候站银川站地面气象观测资料以及亚欧范围内地面、探空气象观测资料,从气象要素及环流形势两方面系统探讨气象条件对银川臭氧质量浓度的影响。结果表明:银川市区臭氧质量浓度与气温呈正相关,与相对湿度呈负相关;风力较小时垂直混合起主导作用,臭氧质量浓度与风力呈正相关,而风力较大时水平扩散起主导作用,臭氧质量浓度与风力呈负相关;偏南风及朝向贺兰山的风向,有利于臭氧浓度上升。造成银川市区臭氧污染的环流形势有槽脊型(44%)、宽广低槽型(21%)、副高型(16%)、东北高脊型(8%)和其他型(11%),近地层逆温和海平面低压(或倒槽)是造成银川市区臭氧污染最重要的天气系统。  相似文献   

9.
江苏淮安地区大气污染变化特征及其与气象条件的关系   总被引:1,自引:0,他引:1  
采用江苏省淮安市地面5个监测站2013年1月1日—2015年12月31日PM_(10)、PM_(2.5)、SO_2、NO_2、CO、O_3逐日质量浓度资料及同期气象资料,统计分析了该地区空气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD(Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM_(10)、PM_(2.5)占比分别达到25.2%、48.9%,PM_(10)中PM_(2.5)比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。  相似文献   

10.
利用2017年1月1日—7月31日陕西省十地市空气质量资料和气象站地面观测资料,分析了2017年1—7月陕西省空气质量时间变化特征及影响大气环境质量的气象条件。结果表明:全省城市空气质量与2016年同期相比较差,1—3月全省首要污染物为颗粒物(PM25和PM10),5—7月为臭氧。1—3月各市平均风速均在30 m/s以下且小风频率较高;全省冷空气活动较上年同期减少3次且强度偏弱;全省平均混合层高度与上年同期相比降低22 m。与上年同期相比,平均风速小,小风日数增多,冷空气活动次数减少且强度偏弱,混合层高度偏低,是颗粒物污染过程增多的主要因素。5—7月臭氧质量浓度与高温显著正相关,当日平均气温≥30 ℃或日最高气温≥35 ℃时,臭氧显著超标;臭氧质量浓度随日照时数增加而升高,日照时数≥6 h时,各市臭氧平均质量浓度均较高,日照时数≥10 h时臭氧超标率最高;臭氧质量浓度随日平均相对湿度的升高而降低,当相对湿度<600%时,臭氧平均质量浓度超过140 μg/m3,当相对湿度≥700%时,臭氧超标率明显降低。与上年同期相比,气温偏高,日照充足,湿度减小是造成臭氧超标日增多的主要因素。  相似文献   

11.
基于2013—2018年大连中心城区O_(3)监测数据和气象数据,分析了该区O_(3)污染时空变化特征及气象要素对O_(3)污染的影响。结果表明:2013—2018年大连中心城区O_(3)已经逐渐成为最主要的大气污染物之一。O_(3)年平均浓度由2013年的66.66μg·m^(-3)上升至2018年的101.62μg·m^(-3)。秋季和夏季是大连O_(3)浓度较高的季节,其次是冬季和春季。O_(3)最高浓度月份主要为5月、6月及9月。O_(3)浓度日变化呈明显的单峰状,从上午08时开始增加,在下午14—16时达到最高,白天浓度高于夜晚。O_(3)污染物在2013—2017年从大连中心城区的西南向东北扩散。大连中心城区O_(3)与其他5种大气污染物均存在不同程度的负相关,与气温呈显著正相关,与相对湿度、气压及风速相关性较差。有利于大连O_(3)污染天气的气象条件主要为高气温(>30℃)、低湿度(≤80%)、低风速(1.5—2.0 m·s^(-1))、北风风向和长日照时间。高污染日的出现可能是受高温天气与本地逐渐增加的排放物共同影响。  相似文献   

12.
李苹  余晔  赵素平  董龙翔  闫敏 《高原气象》2019,38(6):1344-1353
利用2015-2017年环保部发布的近地面臭氧(O_3)和其他3种污染物[粒径小于2. 5μm的颗粒物(PM_(2.5))、一氧化碳(CO)、二氧化氮(NO_2)]小时浓度数据和美国国家气候资料中心收集的气象要素监测数据,分析了中国近地面O_3污染状况,并用逐步回归方法分析了影响O_3重污染区域夏季近地面O_3浓度的因素。结果表明,2015-2017年我国O_3日最大8 h滑动平均浓度(O_3MDA8)年平均值分别为83.02±16. 79,87. 05±14. 32和94. 70±13. 89μg·m~(-3)。O_3MDA8浓度逐年增长(增长率14. 07%),其中冬季增长最快(增长率范围14. 67%~34. 32%),夏季增长最慢(增长率范围2. 32%~14. 16%)。京津冀、长三角、山东半岛、川渝和中原地区近地面O_3污染较重,影响这5个区域近地面O_3浓度的主要因素为温度、相对湿度和PM_(2.5),除此之外京津冀和川渝地区的近地面O_3浓度受NO_2影响明显,中原地区的近地面O_3浓度受CO影响明显。  相似文献   

13.
利用广东省惠州市区2013—2016年逐日、逐时的环境和气象资料, 研究了珠江三角洲(简称“珠三角”)东侧惠州市臭氧污染特征及其与气象条件关系。结果表明:惠州市臭氧污染具有明显的月和季节变化特征, 10月臭氧平均浓度最高, 臭氧超标日和污染日主要出现在7—10月。惠州市臭氧浓度日变化呈单峰变化, 06—08时最低, 最大值出现在午后14—15时。臭氧浓度变化和气象条件关系密切, 低浓度臭氧大多出现在气温较低、相对湿度和风速较大、云量较多伴有降水、日照时数较小的天气, 臭氧浓度超标多出现在气温较高、相对湿度和风速较小、云量较少一般无降水、日照充足的天气。惠州市臭氧超标主要出现在地面和低空偏西风下, 这可能与惠州市处于珠三角城市群下风向的区域污染输送有关。   相似文献   

14.
文章利用呼和浩特市2006—2009年环境监测点监测的SO2、NO2和PM10平均浓度资料进行统计分析,得到:(1)呼和浩特市SO2日平均浓度在0.017~0.188mg·m-3之间,超标率为4.0%,NO2在0.026~0.081mg·m-3之间,未超过国家二级标准,PM10在0.036~0.332mg·m-3之间,超标率达到6.5%;(2)污染物浓度最小的月份是7月、8月,最大的月份是1月和12月;(3)近年呼和浩特污染物浓度总体呈下降趋势。  相似文献   

15.
河北石家庄市近地层臭氧浓度特征及气象条件分析   总被引:1,自引:0,他引:1  
利用2016年3月至2018年2月河北石家庄市环境监测站O_3及其前体物质量浓度逐时和逐日观测资料,以及气象站逐日气象观测数据,分析石家庄市近地层O_3质量浓度的时间变化特征及其与前体物NO_2、CO和气象条件的关系。结果表明:石家庄市O_3污染2017年比2016年严重,2017年比2016年O_3超标日数增加30 d,超标率上升8%,O_3年平均质量浓度上升17μg·m~(-3)。O_3质量浓度具有明显的季节变化特征,自夏季、春季、秋季、冬季依次降低,5—9月O_3质量浓度较高,平均值超过160μg·m~(-3),6月达到峰值208μg·m~(-3)。O_3质量浓度的日变化表现为单峰型分布,最低值出现在07:00左右,峰值在14:00—16:00。太阳辐射强、气温高、日照时数长、能见度好、无降水和相对湿度较低的条件下,石家庄市易出现O_3浓度超标天气。前体物NO_2、CO与O_3质量浓度之间夏季呈现显著正相关,而冬季则呈显著负相关。  相似文献   

16.
利用惠州市区逐日的环境监测资料,统计分析了2013—2016年珠三角东侧惠州市空气质量特征。结果表明:(1)惠州市空气质量整体较好,全年以优良天气为主,未出现过重度和严重污染天气。(2)空气质量具有明显的季节变化特征,汛期高于非汛期,4季中夏季最好冬季最差。(3)从优良率、AQI、空气质量综合指数、主要污染物平均质量浓度等都反映空气质量逐年持续改善,2016与2013年相比有明显提升。(4)臭氧已成首要污染物,夏秋季是臭氧污染的高发季节,今后空气质量改善需重点加强臭氧防治。  相似文献   

17.
利用2014—2020年河北沧州逐小时气象与环境监测数据,对沧州市臭氧(O_(3))污染加剧现状及其与气象因子的关系进行分析。结果表明:(1)沧州地区O_(3)污染呈加剧态势,且O_(3)已上升为该地区首要污染物;O_(3)污染集中出现在5—9月,O_(3)质量浓度日变化呈单峰单谷型,最大浓度出现在16:00前后;(2)5—9月O_(3)日最大8 h平均质量浓度(简称“O_(3)-8 h”)所处时段,平均气温、最高气温、相对湿度、总辐射辐照度与O_(3)质量浓度的相关性较好,本站气压、水汽压和平均风速与O_(3)质量浓度的相关性未通过显著性检验;(3)5—9月O_(3)-8 h时段,当同时满足8 h平均气温高于30.9℃、最高气温高于32.7℃、平均相对湿度低于42.1%、平均总辐射辐照度高于505.8 W·m^(-2)时,出现O_(3)污染的概率达84%;(4)气象因子不是O_(3)小时质量浓度快速增长的充分条件。  相似文献   

18.
基于环境空气质量监测数据,本文分析了2022年6月14—18日高温热浪期间江苏省臭氧污染过程的时空变化特征,并结合天气形势、WRF-CMAQ模拟和典型城市大气超级站挥发性有机物(VOCs)在线监测数据进行了成因分析。结果表明:高温热浪期间,江苏省13个地级城市臭氧污染超标率达96.9%,中度污染超标率为27.6%,臭氧日最大8 h(MDA8 O 3)峰值质量浓度高达260.0μg·m^(-3)。南通市、无锡市、苏州市3个典型城市臭氧质量浓度的日变化特征显示,07—13时臭氧质量浓度增长率在27.9%~46.7%,多个时段净增量超过40.0μg·m^(-3)。利用WRF-CMAQ模型对污染过程进行了数值模拟、过程分析和溯源分析。结果显示,典型城市白天小时平均光化学贡献在24.5~33.0μg·m^(-3)之间,稳定高值的光化学贡献,叠加持续稳定或突发的传输贡献,导致此次高温热浪下臭氧质量浓度爆发式升高,出现峰值污染。在偏南风的影响下,省外污染源来自浙江省贡献最高,在13.9%~33.8%,其中无锡市和苏州市受浙江省外源影响较大。此外南通市大气超级站VOCs在线监测结果显示,臭氧污染期间逐日VOCs体积分数在45.5×10^(-9)~83.6×10^(-9)之间,整体处于高值水平,臭氧生成潜势(OFPs)贡献排名前十的物种以烯烃和芳香烃物质为主。  相似文献   

19.
利用地面常规气象要素和逐小时污染物浓度资料,对青岛上合峰会期间的臭氧污染特征及气象条件进行了统计分析。结果表明,在峰会保障期间,各类污染物浓度均有不同程度下降,其中日最大8 h滑动平均臭氧浓度下降至94.1μg/m~3,较峰会保障前期下降2.9%。白天大气氧化性主要受O_3控制为主,所占比例达到93.4%。此外,臭氧日变化曲线相较于温度日变化曲线存在1 h滞后性,且风速小于2 m/s的条件下,容易出现臭氧污染情况。基于CAMx空气质量数值模型中的臭氧来源追踪方法(Ozone Source Apportionment Technology,OSAT),对青岛臭氧的污染来源进行了模拟分析。研究结果表明,峰会前期,江苏、安徽对青岛臭氧贡献分别达到32.5%和11.1%,而峰会期间除青岛本地贡献较为突出之外,来自山东、河北及辽宁的贡献有所增加,分别达到了21.7%、9.8%及4.3%。  相似文献   

20.
利用2013—2014年邯郸市环境监测站环保资料、邯郸气象站地面观测资料及邢台站探空资料,分析了邯郸大气环境特征及影响污染物扩散的气象条件,结果表明:空气重污染主要发生在秋冬季和初春季节;2014年影响污染物扩散的气象条件与2013年的大体相当,但2014年邯郸重污染日数减少,达标日数增加,污染物浓度较2013年的下降,重污染天气持续时间较2013年的明显减少,表明邯郸市实施的一系列减排措施效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号