首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 273 毫秒
1.
利用乌鲁木齐市5座100 m气象塔10层气温观测资料,通过统计方法详细分析了乌鲁木齐市城区和郊区近地层不同高度气温季节变化和日变化特征。研究表明:乌鲁木齐市四季均存在逆温,北郊逆温最明显。近地层100 m内主城区气温日较差较小,约为3.5~5.5 ℃;郊区气温日较差较大,约为4.2~7.0 ℃。夏季郊区气温高于城区,冬季北郊气温最低、南郊最高;白天大气基本上为超绝热不稳定状态,夜间城区气温高于郊区。春、秋季,白天城区和郊区温差小、夜间大,且愈近地面温差愈大;春季城区与南郊温差可达2.4 ℃、秋季可达3 ℃。城区和郊区各季节各层最高气温与最低气温出现时间几乎不同步达到。夏季、秋季、冬季和春季最高气温分别约在17:00~18:10、16:00~17:20、14:30~15:50(北郊滞后1.5 h)、17:00~18:00(南郊提前1.5 h)出现,最低气温分别约在7:10~8:20、8:00~9:00、冬季为多个时段(这与出现逆温有关)、7:30~8:40出现。  相似文献   

2.
利用乌鲁木齐市城区和郊区的5座100 m气象铁塔10层比湿数据和乌鲁木齐气象站L波段探空雷达资料,详细分析了边界层2 km内比湿廓线特征,城区和郊区近地层比湿季节变化和日变化特征,揭示了乌鲁木齐逆湿的原因,得出以下结果:(1) 乌鲁木齐市比湿季节差异明显,冬季最小,春季、秋季稍大,夏季最大,夏季比湿约为冬季的4~5倍,但秋季仅比春季大1 g·kg–1。除冬季外,比湿均随高度增加而趋于减小,夏季减小最显著,冬季比湿的垂直变化很小。比湿廓线极小值白天和夜间出现高度相近,且有多个极小值。夏季和冬季比湿日变化最大,且位相相反;夏季夜间大、白天小,冬季与之相反。冬季,郊区比湿小于城区;其余季节城、郊比湿差异不明显。(2) 2 km内存在逆湿现象,逆湿出现概率高于35%,概率1月最大、7月最小。1月逆湿最大高度超过1 500 m,7月逆湿最大高度可达到1 900 m,且最大厚度可达到1 550 m。逆湿强度最大在7月和10月可达2. 5 g·kg–1·(100 m)–1,而1月最小。(3) 1月逆湿往往与逆温相伴随,逆温层改变了水汽的垂直分布结构,从脱地逆温层顶起出现逆湿现象,逆湿还与水汽输送有关。本研究可以有效地揭示空气湿度的季节特征,为研究城市大气污染形成的气象因素提供了一个思路。  相似文献   

3.
科尔沁沙地奈曼旗近5年来风况及合成输沙势   总被引:21,自引:13,他引:8  
应用奈曼沙漠化研究站1998-2002年的气象资料, 统计分析了奈曼旗近5a来的风况特征和输沙势。结果表明: ①研究区3~5月起沙风发生频数最高, 占全年起沙风的38%~58%; 平均风速和最大风速值最大, 分别为6.0~7.5m·s-1和9.5~16.9m·s-1。该风况特征与地表冻融、裸露、干旱疏松相耦合, 形成了区内的风沙活动期。②在风沙活动期内, 风环境基本为锐双峰风况, 西北风居主导地位, 频数占54%; 南风和西南风次之, 频数占38%。③在风沙活动期内, 研究区属于高风能环境, 合成输沙势RDP为66.3VU(风速以m·s-1为单位), 合成输沙方向RDD为ESE113°。  相似文献   

4.
韩广  尤莉  程玉琴 《中国沙漠》2016,36(4):1087-1096
对13个气象台站2014年5月上旬逐时风况的分析发现:(1)受高空槽和地面低压的影响,科尔沁沙地冷锋过境时瞬时风速8h内快速增加到10m·5s-1以上,风向转为西北风;(2)上风向锡林郭勒草原的冷锋推进速度约为12.5m·5s-1,科尔沁沙地主体部分则降到9.21m·5s-1,总体推进速度因地而异;(3)风速的功率谱以大兴安岭东麓的林西县幅值最大,科尔沁左翼后旗最小;(4)沙地和草原两地区分别存在区域性10h、25h和2h、4h周期性,而冷锋过境引起的强风周期性不明显;(5)常年稳定而频繁的冷锋过境,不仅造成了沙丘的形态变化和不同程度的位移,而且还塑造和维持着该区沙丘群的多种空间格局。  相似文献   

5.
利用乌鲁木齐市4座10层100 m梯度气象塔2013年6月~2014年4月气象观测资料和7个环境监测站[WTBX]AQI[WTBZ]资料,计算并分析了大气混合层厚度和稳定度特征,探讨了大气混合层厚度和稳定度与污染的关系。结果表明:乌鲁木齐市混合层厚度夏季郊区高、城区低,冬季从南郊—城区—北郊随地势降低依次降低;夏季和冬季分别在1 559~1 772 m和526~1 156 m之间。地面至2 km以上每500 m高度间隔统计混合层厚度,500~1 000 m出现频率最多;月变化为6~9月基本在500 m以上,且每个高度区间其概率均超过10%,10月~次年2月1 500 m以上区间概率明显减小;日变化为中午13:00~16:00达到最高值,下午和傍晚迅速下降。白天较大的感热输送提供充足的热力条件,这也体现出白天以不稳定层结为主,夜间则以稳定层结为主。大气稳定度分类结果,夏季郊区和城区不稳定(A~C类)所占比例差不多,冬季北郊稳定(E、F类)所占比较最大、城区最弱。[WTBX]AQI指数冬季最大,从南郊—城区—北郊依次增大,这与采暖期污染物多、南郊比北郊地势高有利于扩散输送有关。总体来看,乌鲁木齐大气混合层厚度空间分布与气象要素、大气稳定度、地形等密切相关,对AQI[WTBZ]指数分布有重要影响,这对近地层大气污染状况预报有着重要的指导意义。  相似文献   

6.
小麦玉米田耕作模式的防风蚀效果   总被引:2,自引:0,他引:2  
通过风洞实验,在5个风速下对6种耕作方式下农田土壤风蚀速率、0~20 cm风沙流结构进行了模拟研究。结果表明:保护性耕作土壤风蚀速率较传统耕作平均降低20%~40%;保护性耕作和传统耕作条件下土壤风蚀速率均随风速的增大呈幂函数递增,但在传统耕作条件下递增较快;风速14 m·s-1是荒漠绿洲农田土壤风蚀加剧转折点,当风速>14 m·s-1时保护性耕作下风蚀速率较传统耕作明显降低;0~20 cm内,传统耕作和保护性耕作下输沙率与高度分别呈线性和指数关系,保护性耕作下0~4 cm输沙量和输沙量百分比(Q0~4/Q0~20)均低于传统耕作。  相似文献   

7.
利用2018年10月8日至2019年1月31日塔克拉玛干沙漠腹地起伏地形上高大沙垄高点和低点的温度、相对湿度、风速和大气压同步观测资料,对比分析沙漠起伏地形上秋冬季的微气象特征。结果表明:塔克拉玛干沙漠腹地高大沙垄造成的地形起伏,使得沙垄高点和沙垄低点气温、比湿和风速日变化差异明显。沙垄高点和沙垄低点气温差异主要体现在夜间,与沙漠腹地夜间存在逆温现象有关,表现出沙垄高点气温明显高于沙垄低点,观测期气温差异平均值为6.6 ℃。沙垄低点气温日较差高于沙垄高点。2018年10、11、12月,气温随高度变化出现逆温现象与沙垄高点气温高于沙垄低点气温在时间上相互对应。两个站点比湿较小,平均比湿分别为0.68 g·kg-1和0.99 g·kg-1。比湿日变化趋势随季节发生显著变化,主要与大气稳定度增加、冬季水汽增多及夜间逆湿现象逐渐显著相关。地形位置较高的沙垄高点风速比沙垄低点大,风速差异主要体现在夜间。2018年11月2、14、15、20日和2019年1月30日,沙垄高点风速维持在1.9~4.6 m·s-1,平均3.2 m·s-1,沙垄低点风速维持在0.8~4\^5 m·s-1,平均2.5 m·s-1。  相似文献   

8.
塔克拉玛干沙漠腹地人工绿地中心区域与边缘地带小气候   总被引:1,自引:1,他引:0  
利用2013年8月至2014年7月塔克拉玛干沙漠腹地人工绿地中心和边缘地带气温、相对湿度、气压、风速和风向资料,对比分析了绿地中心和边缘地带的小气候特征。结果表明:该区域局地小气候主要体现在风速和春、夏、秋季湿度上,而气温和冬季湿度分别主要受逆温和逆湿的影响。白天,绿地中心区域的气温与边缘地带相差较小,但夜间二者相差较大;1月、4月、7月、10月夜间因近地层80 m内存在明显逆温现象,边缘地带所处地势较高,气温比中心区域高0.1~8.3℃、0.3~4.1℃、0.4~4.2℃、0.5~8.4℃。绿地中心区域3-10月湿度明显高于边缘地带,塔中本站湿度比西沙梁高0.3~1.8 g·kg-1、比东沙梁高0.7~3.5 g·kg-1,体现了绿化带增加湿度的作用,但1月因近地层80 m内具有明显逆湿现象,绿地中心区域湿度比边缘地带小。绿地中心区域和边缘地带3-10月风速较大,12月至次年2月风速较小;绿地中心区域风速明显小于边缘地带,塔中本站日平均最大风速比边缘地带约高0.5~1.0 m·s-1,体现了植被对风速的减弱作用。  相似文献   

9.
小网窄带防护林在干旱区防护林构建中发挥着重要作用,研究小网窄带防护林叠加防风效果对指导防风固沙林空间配置与结构优化具有重要意义。选取两种典型小网窄带防护林网,对连续6个林网叠加的防护林开展基于流场分析防风效果的风洞模拟试验。结果表明:小网窄带防护林叠加后随着林网数量的增加各林网内的风速逐渐减小且在中间林网位置趋于稳定,乔木纯林林网在第3林网基本达到稳定,乔灌混交林网在第2林网达到稳定;两种防护林各林网内风速均符合正态分布特征,风速稳定后多为右偏态高狭峰;16 m·s-1风速下,乔木纯林网叠加(0~252 cm)的防风效能分布范围为16%~74%,整体在60%防风效能下发挥着良好防风效果,乔灌混交林林网叠加的防风效能分布范围为15%~89%,整体在70%防风效能下发挥着良好防风效果;16 m·s-1风速下,乔木纯林林网叠加(0~42H,H=6 cm)的风速加速率为0.25~0.94,乔灌混交林林网叠加的风速加速率为0.1~0.94;根据风速加速率的分布特征划分出4个不同的风速分布区,分析还发现灌木对林带枝下高范围的近地层气流影响显著,对削弱近地层风速起到了重要作用。  相似文献   

10.
柴达木盆地风况及输沙势特征   总被引:3,自引:2,他引:3  
利用柴达木盆地13个气象站的风资料,分析了盆地风况和输沙势的变化特征。结果表明:(1)盆地年平均风速2.0~4.4 m·s-1,自盆地南、北边缘山地到盆地中部逐渐降低。盆地西部主风向为偏西风,风向较集中;东部主风向为偏东风,风向较分散。(2)盆地年平均起沙风速7.0~8.2 m·s-1,起沙风频率5.1%~26.1%,主要发生在冬、春季,风向以WNW和W为主。(3)盆地输沙势34.0~462.3 VU,盆地西北部属于高风能环境,中部及东南部属于低-中风能环境,方向变率0.45~0.91,风况为窄单峰或宽单峰风况,盆地西北部和东南部差异较大,东部德令哈站与其他地区的合成输沙势方向相反。  相似文献   

11.
1960-2013年南北疆风速变化特征分析   总被引:3,自引:2,他引:1  
何毅  杨太保  陈杰  冀琴  王凯 《干旱区地理》2015,38(2):249-259
利用较为均匀分布在新疆的45个气象站1960-2013年平均风速数据,通过气候趋势分析、气候突变分析、Morlet小波分析、Pearson相关分析等方法,研究近50 a来南北疆平均风速变化特征,结果表明:(1)1960-2013年南北疆地区年平均风速分别以0.15 m·s-1·(10 a)-1和0.14 m·s-1·(10 a)-1的速率显著降低,1960-1990年南北疆年均风速分别以0.21 m·s-1·(10 a)和0.18 m·s-1·(10 a)-1速率降低;1991-2013年北疆以0.01 m·s-1·(10 a)-1的速率下降,而南疆却以0.17 m·s-1·(10 a)-1的速率上升,各季节风速变化趋势与年序列相似。(2)四季中,南北疆的年递减率均是夏季最为显著,北疆是冬季变化不明显,而南疆其余各季节相差不大。(3)从空间分布上显示,北疆各站点总体较南疆明显,低海拔区递减幅度较大。(4)风速的长期变化具有一定的突变性,南北疆的平均风速均在1980年前后出现明显的突变点,从各季节平均风速来看,北疆春、夏、秋季突变出现的时间稍早于冬季,南疆春季突变出现的时间稍早于夏、秋和冬季。(5)Morlet小波分析结果显示,南北疆风速变化均存在4 a、8 a及15~20 a左右的变化周期,春夏秋冬各季节表现出强弱不一致,体现出季节性变化。(6)城市化发展对风速的变化产生了一定影响,但不是风速显著下降的主要原因,大气环流变化和气候变暖才是造成风速减小的可能原因。  相似文献   

12.
根据腾格里沙漠周边地区9个气象站点1960-2012年逐月平均气温、平均最高气温、平均最低气温、降水量、平均相对湿度、日照时数和平均风速的观测资料,利用线性回归、滑动平均和Mann-Kendall突变检验分析了该区1960-2012年气候变化特征。结果表明:1960-2012年,腾格里沙漠周边地区年平均气温以0.34 ℃/10a的速率呈显著上升的趋势,并于1989年发生显著突变;从季节变化来看,冬季升温幅度最大,达0.52 ℃/10a;年平均最高、最低气温均呈显著上升的趋势,但是年平均最低气温的升温速率0.44 ℃/10a明显大于最高气温升温速率0.25 ℃/10a,增暖的不对称性导致年平均气温日较差以0.18 ℃/10a的速率显著减小。年降水量以1.08 mm/10a的速率增加,但变化趋势不显著,四季降水量均有不同程度的增加;湿润指数的变化亦不显著,年、春季、夏季和秋季湿润指数均有减小趋势,冬季湿润指数有增加趋势;年、季平均风速皆呈显著减小的趋势,年平均风速减小的速率为0.15 m·s-1·(10a)-1,日照时数以5.6 h/10a的速率呈不显著的增加趋势,各季节日照时数有不同的变化趋势,春季和夏季日照时数呈增加趋势,而秋季和冬季的日照时数呈减小趋势。  相似文献   

13.
随着中国低空空域的陆续开放,依靠现有的低空飞行气象保障技术为低空安全飞行提供服务略有不足,对飞行影响最大的风进行预报也有一定的困难。论文基于WRF(Weather Research and Forecasting Model)中尺度数值模式,对2015—2019年京津冀地区的风速风向进行模拟,并将模拟结果与气象站观测数据进行对比分析,可为该地区无人机低空航路飞行安全提供保障。结果表明:WRF模式能够较好地模拟风速的季节变化趋势,平原地区的模拟效果优于山区,山区模拟的风速偏大,但误差在可接受的范围内(RMSE<1.5 m·s-1)。平均风速、最大风速最小值均出现在夏末,平均风速最大值出现在春季(山区4.43 m·s-1、平原4.13 m·s-1);最大风速在冬、春、夏初呈波动递增,夏季中旬开始减少,夏末秋初降至最小。京津冀地区风速呈西北向东南递减,泊头站(-0.02 m·s-1·(5 a)-1)和天津站(-0.02 m·s-1·(5 a)-1)平均风速呈下降趋势,其余站点风速呈上升趋势,唐山站上升率最大(0.08 m·s-1·(5 a)-1);在风速季节空间分布中,平均风速以上升趋势为主,站点所占比例为春季45.45%、夏季90.91%、秋季63.63%、冬季81.81%。平原地区盛行风呈东北—西南向;山区站点怀来站风向以WNW(18.70%)和W(15.01%)为主,蔚县站风向以N(16.79%)和NNW(12.03%)为主,相较于平原地区,山地地区风速8.0 m·s-1的大风数量显著上升。1000 m高度的平原地区大风出现频率显著增加,增长速度高于山地地区,不利于无人机飞行,风速17.0 m·s-1以上出现的概率明显高于山地地区。  相似文献   

14.
以中国风沙高发区河西走廊为研究对象,应用河西走廊敦煌、酒泉、张掖和民勤4站2006—2017年逐日19:00每50 m加密高空资料和07:00规定层、特性层高空资料,分别采用平滑位温法、T-LnP法,统计分析了该区边界层高度的变化特征及其影响因子、边界层高度与风沙强度的关系,得出边界层高度与风沙强度成正比。进一步从地面风速、相对湿度、地气温差日变化得到春季午后风沙天气多发和强发的主要成因,得到了沙尘暴不同环流形势下的边界层高度持征,以及高空风速≥15 m·s-1的最低高度与风沙强度的关系,从而为风沙天气预报提供技术帮助。结果表明:河西走廊年均边界层高度1 700~2 200 m,4—6月较高,在3 000 m以上,敦煌4—5月在3 500 m以上。边界层高度与最高气温、最低气温和0 cm最高地温较密切,与最高气温、极大风速成正比。边界层高度随着风沙强度的增强而增高,4月强沙尘暴和大风的边界层高度均大于3 100 m。春季风速随着风沙强度的增强而增大,最大风速集中时间在12:00—18:00,春季13:00—14:00风速最大、相对湿度最小、地气温差最大,因而也是风沙天气出现最多和强度最强的时段。沙尘暴持续时间越短,边界层越高,4—6月下午的沙尘暴较高,为2 800~3 100 m。沙尘暴不同环流形势的边界层高度中西风槽型整体较低;平直西风型4、6月和8月较高,均达3 100 m以上,8月为3 580 m;而西北气流型高于西风槽型,5—6月大于3 200 m。不同风沙强度高空风速≥15 m·s-1的最低高度,冬春季较低,夏秋季高;浮尘较高为4 884 m,大风伴沙尘最低为2 471 m,大风沙尘暴07:00较19:00高600 m左右,明显较边界层高1 000~2 000 m。  相似文献   

15.
不同间距双排尼龙阻沙网防风效应的风洞模拟   总被引:1,自引:0,他引:1  
为揭示风速和间距对双排尼龙阻沙网防风效应的影响,开展对2H、5H、10H、15H(H为尼龙网高度)间距尼龙阻沙网在6、9、12 m·s-1风速下的风洞模拟试验,对不同风速、间距下加速率等值线、变化趋势和防风效能进行对比分析。结果表明:①风速和间距对双排尼龙阻沙网加速率极小值出现的相对位置基本无影响,但后排网后极小值小于前排网后,两排尼龙网对风场的影响存在累加效应。②双排尼龙阻沙网防风效应随来流风速增大而明显降低。③2H、5H间距双排尼龙阻沙网防风效应相对较好,5H最优,10H最差该结果与相同间距设置的野外实验相一致。实际应用中尼龙阻沙网的布设应综合考虑风况、布设间距等因素,笔者建议双排尼龙阻沙网布设间距采用5H。  相似文献   

16.
辛渝  于晓晶  陈洪武 《中国沙漠》2015,35(4):994-1005
为了客观评价Wind Energy Resource Assessment System /CMA(简称WERAS/CMA)系统(CTL方案)和将其中的客观分析法改成四维同化系统(简称FDDA方案)对既受狭管效应影响、又受湖陆风影响的阿拉山口和达坂城-小草湖风区起伏下垫面中的风能资源数值模拟的优劣,根据2009年7、10月和2010年1、4月 12UTC的NCEP再分析资料以及同期CMACAST下发的WMO各种常规观测资料开展了风场预报效果对比实验。结果表明:(1)对复杂区域而言,两种方案比过去单纯只用中尺度模式进行风场模拟的平均相对误差至少减小10%;(2)总体而言,两种方案对70 m高度处的风速模拟误差要大于30、50、100 m处的误差,在受多种环流尺度影响区域,模式在刻画平均风速/风向频率廓线方面的缺陷均极其相似;(3)在70 m高度上,两种方案5 m·s-1以内的风速平均相对误差可达60%~130%,>5 m·s-1的误差可控制在15%以内;对受湖陆风影响区域的模拟误差明显偏大,误差大小与湖陆风效应的季节变化有关; (4)两种方案均能抓住70 m左右高度上不同等级风速段的气候背景,对达坂城风区5~15 m·s-1风速段的Ts预报评分可达0.6~0.7,对阿拉山口和小草湖风区≤5 m·s-1风速段的Ts预报评分分别可达0.6~0.7和0.9左右。然而,对达坂城风区≤5 m·s-1风速段的Ts预报评分仅0.3~0.4;(5)两种方案对所有风区需采取停机保护措施的、15 m·s-1以上强风预报的Ts评分仅在0.4~0.6;(6)同一测风塔不同高度上,FDDA方案对风的预报效果不一定总优于CTL方案,但在70 m高度上,FDDA总体略优于CTL;即使同一风区,各个测风塔之间两种方案的预报效果也是因局地多尺度环流影响的不同或因预报的高度不同或预报季节的不同而异,这种预报误差差异的机理还有待探究。  相似文献   

17.
1971-2013年环渤海地区风速的时空特征   总被引:2,自引:1,他引:1  
曹永旺  延军平 《中国沙漠》2015,35(5):1320-1329
基于环渤海地区60个站点1971-2013年日序列最大风速数据,采用线性倾向估计、Mann-kendall检验、反距离加权插值、小波分析等方法,分析了近年来环渤海地区风速的年、季节的变化趋势及其空间分异等特征。结果表明:(1)环渤海地区年均最大风速为6.35 m·s-1,并以0.423 m·s-1的年代变化速率呈显著的下降趋势。区内除承德、丰宁和阜新站点呈略微上升趋势,其余站点均呈下降趋势,整体上表现为南部下降幅度高而北部下降幅度低。四季最大风速也均呈显著的下降趋势,冬、春季的最大风速对全年趋势演变贡献率较大。(2)偏北风(尤其是北西北风)和偏南风(尤其是南西南风)是本区的主要风向。春、夏两季以偏南风为主要风向,秋、冬两季则以偏北风为主要风向。(3)环渤海地区最大风速减少的主要原因是各站点日最大风速为5级及以上的发生频率分别以0.912、0.671、0.271、0.076 d·a-1的速率呈下降趋势;大风频率也以1.019 d.a-1的速率呈下降趋势。冬半年是本区大风日数相对较多的时段,春季尤甚。(4)本区多数地区属大风较少区和较多区,其中大风较多区的站点最多(31个),而大风频发区的站点最少(仅4个)。位于大风较少区的站点数增长迅速,而大风较多区、多发区和频发区的站点数则均呈现下降趋势。最大风速与大风日数均具有25~30 a的显著振荡周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号