首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Declining sea ice area in the Canadian Arctic has gained significant attention with respect to the prospect of increased shipping activities. To investigate relationships between recent declines in sea ice area with Arctic maritime activity, trend and correlation analysis was performed on sea ice area data for total, first-year ice (FYI), and multi-year ice (MYI), and on a comprehensive shipping dataset of observed vessel transits through the Vessel Traffic Reporting Arctic Canada Traffic Zone (NORDREG zone) from 1990 to 2012. Links to surface air temperature (SAT) and the satellite derived melt season length were also investigated. Between 1990 and 2012, statistically significant increases in vessel traffic were observed within the NORDREG zone on monthly and annual time-scales coincident with declines in sea ice area (FYI, MYI, and total ice) during the shipping season and on a monthly basis. Similarly, the NORDREG zone is experiencing increased shoulder season shipping activity, alongside an increasing melt season length and warming surface air temperatures (SAT). Despite these trends, only weak correlations between the variables were identified, although a step increase in shipping activity is apparent following the former summer sea ice extent minimum in 2007. Other non-environmental factors have also likely contributed to the observed increase in Arctic shipping activity within the Canadian Arctic, such as tourism demand, community re-supply needs, and resource exploration trends.  相似文献   

2.
国家气候中心气候系统模式BCC_CSM2.0最新耦合了美国Los Alamos国家实验室发展的海冰模式CICE5.0,为试验模式中与反照率相关参数的敏感性及其对模拟结果的影响,提高模式对北极海冰的模拟能力,选取海冰模式中3个主要参数进行了敏感性试验。利用以BCC_CSM2.0耦合框架为基础建立的海冰-海洋耦合模式,选取CORE资料为大气强迫场开展试验,试验的3个参数分别为冰/雪表面反射率、雪粒半径和雪粒半径参考温度。结果表明,参数取值的不同对北极海冰的模拟有显著的影响,优化后的取值组合极大提高了模式的模拟能力,主要表现在:(1)改善了对北极冬季海冰厚度的模拟,海冰厚度增大,与观测资料更为吻合;(2)显著提高了对北极夏季海冰密集度的模拟能力,从而模拟的北极海冰范围年际循环与观测更为一致。参数取值的优化改进了模式对海冰反照率的模拟,进而影响了冰面短波辐射的吸收和海冰表层的融化,最终提高了模式对海冰密集度和厚度的模拟效果。   相似文献   

3.
海冰模式CICE4.0与LASG/IAP气候系统模式的耦合试验   总被引:3,自引:2,他引:1  
利用美国Los Alamos国家实验室发展的最新海冰模式(CICE4.0)替代了LASG/IAP气候系统模式(FGOALS_g1.1)中的海冰模式(CSIM4), 形成新的耦合模式。在此基础上, 利用新的耦合模式对20世纪中后期的全球气候进行了模拟, 来检验CICE4.0对耦合模式中海冰和海洋模拟结果的改进。结果表明CICE4.0对于FGOALS_g1.1的极地气候模拟有一定改进作用, 主要表现在:(1) 南北极海冰边缘碎冰区显著减少; (2) 南大洋海表温度和海冰的模拟明显改善, 分布特征与观测非常吻合。但是新耦合模式也存在如下不足: (1) 北大西洋海冰相对偏多, 北大西洋经圈翻转环流大大减弱, 这主要是由于北大西洋海表面温度的冷误差造成的; (2) 南北极大气环流场的模拟无明显改善。此外, 本文还比较了采用不同短波辐射方案对于耦合模拟结果的影响, 结果表明, 相对于CCSM3短波辐射方案, Delta-Eddington方案模拟的海表面温度偏冷, 海冰厚度偏厚, 北大西洋经圈翻转环流略有偏弱。  相似文献   

4.
Summary Three one-year experimental simulations with the National Center for Atmospheric Research Community Climate Model (NCAR CCM) were performed with three sea ice albedo parameterizations and compared with control run results to examine their impact on polar surface temperature, planetary albedo and clouds. The first integration utilized sea ice albedos of the Arctic Basin for the spring and summer of 1977 derived from defence Meteorological Satellite Imagery (DMSP). The second simulation employed prescribed lead and melt pond fractions and an albedo weighting scheme. The third simulation involved the coupling of an interactive sea ice/snow albedo parameterization made a function of surface state.Results show that prescribed, and assumed true satellite sea ice albedos produced higher planetary albedos than those calculated with the standard CCM sea ice albedo scheme in the control run. As a result, lower temperatures (up to 0.5 K) and increased cloudiness are generated for the Arctic region. The standard CCM sea ice albedo scheme is used as an adjustment to maintain normal temperatures for the polar oceans. The radiative impact of leads and melt ponds warmed sea ice regions only for short time periods. The third scheme generated markedly lower planetary albedos (reductions of 0.07 to 0.17) and higher surface temperatures (up to 2.0 K) than control values.The CCM simulates a gradual decrease in spring and summer Arctic cloud cover whereas observations show a sharp spring increase. Examination of the CCM code, particularly the cloud parameterization, is required to address this problem.With 12 Figures  相似文献   

5.
In this study, we perform a stand-alone sensitivity study using the Los Alamos Sea ice model version 6 (CICE6) to investigate the model sensitivity to two Ice-Ocean (IO) boundary condition approaches. One is the two-equation approach that treats the freezing temperature as a function of the ocean mixed layer (ML) salinity, using two equations to parametrize the IO heat exchanges. Another approach uses the salinity of the IO interface to define the actual freezing temperature, so an equation describing the salt flux at the IO interface is added to the two-equation approach, forming the so-called three-equation approach. We focus on the impact of the three-equation boundary condition on the IO heat exchange and associated basal melt/growth of the sea ice in the Arctic Ocean. Compared with the two-equation simulation, our three-equation simulation shows a reduced oceanic turbulent heat flux, weakened basal melt, increased ice thickness, and reduced sea surface temperature (SST) in the Arctic. These impacts occur mainly at the ice edge regions and manifest themselves in summer. Furthermore, in August, we observed a downward turbulent heat flux from the ice to the ocean ML in two of our three-equation sensitivity runs with a constant heat transfer coefficient (0.006), which caused heat divergence and congelation at the ice bottom. Additionally, the influence of different combinations of heat/salt transfer coefficients and thermal conductivity in the three-equation approach on the model simulated results is assessed. The results presented in this study can provide insight into sea ice model sensitivity to the three-equation IO boundary condition for coupling the CICE6 to climate models.  相似文献   

6.
《大气与海洋》2013,51(2):229-242
Abstract

Numerous studies have reported decreases in Arctic sea‐ice cover over the past several decades and General Circulation Model (GCM) simulations continue to predict future decreases. These decreases — particularly in thick perennial or multi‐year ice (MYI) — have led to considerable speculation about a more accessible Northwest Passage (NWP) as a transit route through the Canadian Arctic Archipelago (CAA). The Canadian Ice Service Digital Archive (CISDA) is used to investigate dynamic import/export and in situ growth of MYI within the western CAA regions of the NWP from 1968 to 2006. This analysis finds that MYI conditions in the western CAA regions of the NWP have remained relatively stable because the M'Clintock Channel and Franklin regions continuously operate as a drain‐trap mechanism for MYI. Results also show that in addition to the Queen Elizabeth Islands (QEI) region, the Western Parry Channel and the M'Clintock Channel are also regions where a considerable amount of MYI forms in situ and combined with dynamic imports contributes to heavy MYI conditions. There is also evidence to suggest that more frequent dynamic import of MYI appears to have occurred since‐1999 compared to the formation of more MYI in situ before 1999. As a result, the drain‐trap mechanism that has historically maintained heavy MYI conditions in the NWP is perhaps operating faster now than it was in the past. Based on the 38‐year MYI record examined in this study, it is likely that the mechanisms operating within the western CAA regions of the NWP can facilitate the continued presence of MYI for quite some time.  相似文献   

7.
【研究目的】海冰模式CICE(Los Alamos sea ice model)作为当前国际上的主流海冰模式之一,已被耦合进了大部分地球系统模式,对该模式模拟能力的评估工作是发展地球系统模式的重要参考依据。【创新点】通过观测数据与不同版本CICE模式对北极海冰数值模拟结果进行对比分析,研究了最新版本CICE6.0模拟能力及优势。【重要结论】CICE6.0模拟结果的年际误差最小,且季节变化与观测值最为吻合。相较而言,CICE4.0严重高估了冬季海冰总面积及低估了夏季海冰总面积,而CICE5.0在冬季的误差明显大于其他版本。此外,我们也关注了三个模式对多年冰和季节冰的模拟效果,从其均方根误差空间分布看出:模拟误差主要出现在中央海区及其周边海域。CICE4.0和CICE5.0在这些区域模拟的多年冰偏少、季节冰偏多,均低估了多年冰的变化趋势,且高估了季节冰的变化趋势;CICE6.0很好地解决了这些问题,其模拟的多年冰和季节冰的趋势最接近观测值,特别在北冰洋中部。总的来说,CICE6.0模拟的北极海冰在各方面都优于其他版本。  相似文献   

8.
国家气候中心气候系统模式(BCC_CSM)将美国Los Alamos国家实验室发展的海冰模式CICE5.0替代原有的海冰模式SIS,形成一个新版本耦合模式,很好地提高了模式对北极海冰和北极气候的模拟能力。在此基础上,本文评估新耦合模式对1985—2014年东亚冬季气候的模拟性能,检验北极海冰模拟性能的改进对东亚冬季气候模拟性能的影响。结果表明,引入CICE5.0后,新耦合模式能较好地模拟出东亚冬季海平面气压、850 hPa风场以及辐射通量,进而改善东亚气温以及降水的气候态空间分布模拟效果。进一步分析发现,与原有耦合模式相比,新耦合模式更好地抓住了东亚冬季海平面气压、总降水量和气温异常对同期巴伦支海-喀拉海海冰密集度异常的响应,进而提高了模式对东亚冬季中高纬度地区气温以及降水变率的模拟能力。  相似文献   

9.
Based on adjoint sensitivities of the coupled Massachusetts Institute of Technology ocean–sea ice circulation model, the potential influence of thermodynamic atmospheric forcing on the interannual variability of the September sea ice area (AREA) and volume (VOLUME) in the Arctic is investigated for the three periods 1980–1989, 1990–1999 and 2000–2009. Sensitivities suggest that only large forcing anomalies prior to the spring melting onset in May can influence the September sea ice characteristics while even small changes in the atmospheric variables during subsequent months can significantly influence September sea ice state. Specifically, AREA close to the ice edge in the Arctic seas is highly sensitive to thermodynamic atmospheric forcing changes from June to July. In contrast, VOLUME is highly sensitive to atmospheric temperature changes occurring during the same period over the central parts of the Arctic Ocean. A comparison of the sea ice conditions and sensitivities during three different periods reveals that, due to the strong decline of sea ice concentration and sea ice thickness, sea ice area became substantially more sensitive to the same amplitude thermodynamic atmospheric forcing anomalies during 2000–2009 relative to the earlier periods. To obtain a quantitative estimate of changes that can be expected from existing atmospheric trends, adjoint sensitivities are multiplied by monthly temperature differences between 1980s and two following decades. Strongest contributions of surface atmospheric temperature differences to AREA and VOLUME changes are observed during May and September. The strongest contribution from the downward long-wave heat flux to AREA changes occurs in September and to VOLUME changes in July–August. About 62 % of the AREA decrease simulated by the model can be explained by summing all contributions to the thermodynamic atmospheric forcing. The changing sea ice state (sensitivity) is found to enhance the decline and accounts for about one third of the explained reduction. For the VOLUME decrease, the explained fraction of the decrease is only about 37 %.  相似文献   

10.
FGOALS_gg1.1极地气候模拟   总被引:4,自引:0,他引:4  
对中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统模式FGOALS_g1.1的极地气候模拟现状进行了较为全面的评估.结果表明,FGOALS_g1.1对南北极海冰的主要分布特征、季节变化和年代际变化趋势具有一定的模拟能力.但也注意到,与观测相比,模式存在以下几方面的问题:(1)模拟的海冰总面积北极偏多,而南极偏少.北极,北大西洋海冰全年明显偏多;夏季,西伯利亚沿海海冰偏多,而波弗特海海冰偏少.南极,威德尔海和罗斯海冬季海冰偏少.南北极海冰边缘都存在异常的较大范围密集度很小的碎冰区,夏季尤为显著.(2)海冰流速在南北极海冰边缘和南极大陆沿岸附近较大.北极,模式没能模拟出波弗特涡流,并且由于模式网格中北极点的处理问题,造成其附近错误的海冰流场及厚度分布.这些海冰偏差与模式模拟的大气和海洋状况有着密切的联系.进一步分析表明,FGOALS_g1.1模拟的冰岛低压和南极绕极西风带明显偏弱,其通过大气环流和海表面风应力影响向极地的热量输送,在很大程度上导致上述的海冰偏差.此外,耦合模式中大气-海冰-海洋的相互作用可以放大子模式中的偏差.  相似文献   

11.
全球变暖的背景下,北极航线的常规通航甚至商业运营有望实现,而海雾会严重影响航道上船只的航行安全。海冰的存在使海气之间相互作用变得更为复杂,是研究北极海雾不可忽略的因素。船载观测发现,与中纬度常见平流冷却雾形成时气温下降速度往往超过海水降温速度不同,北极海雾发生时海冰的存在还会使海水降温速度超过空气降温速度。然而目前海冰分布是否会影响模式模拟海雾的准确性还不得而知,因此本文利用Polar WRF(Polar Weather Research and Forecasting)模式模拟了中国第七次北极考察中观测到的一次海雾过程,并进行海冰密集度敏感性试验。通过与船载观测和欧洲中期天气预报中心再分析数据比对发现,在低浮冰区内(海冰密集度小于50%)考虑海冰分布时可以更加准确地刻画潜热通量与水汽通量,模拟出与观测事实相符的表层空气降温与增湿过程以及相对湿度的变化,因此能够更好地刻画海雾的三维结构及其生消演变。  相似文献   

12.
Seasonal predictions of Arctic sea ice have typically been based on statistical regression models or on results from ensemble ice model forecasts driven by historical atmospheric forcing. However, in the rapidly changing Arctic environment, the predictability characteristics of summer ice cover could undergo important transformations. Here global coupled climate model simulations are used to assess the inherent predictability of Arctic sea ice conditions on seasonal to interannual timescales within the Community Climate System Model, version 3. The role of preconditioning of the ice cover versus intrinsic variations in determining sea ice conditions is examined using ensemble experiments initialized in January with identical ice?Cocean?Cterrestrial conditions. Assessing the divergence among the ensemble members reveals that sea ice area exhibits potential predictability during the first summer and for winter conditions after a year. The ice area exhibits little potential predictability during the spring transition season. Comparing experiments initialized with different mean ice conditions indicates that ice area in a thicker sea ice regime generally exhibits higher potential predictability for a longer period of time. In a thinner sea ice regime, winter ice conditions provide little ice area predictive capability after approximately 1?year. In all regimes, ice thickness has high potential predictability for at least 2?years.  相似文献   

13.
Substantial reduction in Arctic sea ice in recent decades has intensified air-sea interaction over the Arctic Ocean and has altered atmospheric states in the Arctic and surrounding high-latitude regions. This study has found that the atmospheric responses related to Arctic sea-ice melt in the cold season (October–March) depend on sea-ice fraction and are very sensitive to in situ sea surface temperature (SST) from a series of atmospheric general circulation model (AGCM) simulations in which multiple combinations of SSTs and sea-ice concentrations are prescribed in the Arctic Ocean. It has been found that the amplitude of surface warming over the melted sea-ice region is controlled by concurrent in situ SST even if these simulations are forced by the same sea-ice concentration. Much of the sensitivity of surface warming to in situ SST are related with large changes in surface heat fluxes such as the outgoing long-wave flux in early winter (October–December) and the sensible and latent heat fluxes for the entire cold season. Vertical extension of surface warming and moistening is sensitive to these changes as well; the associated condensational heating modulates a static stability in the lower troposphere. This study also indicates that changes in SST fields in AGCM simulations must be implemented with extra care, especially in the melted sea-ice region in the Arctic. The statistical method introduced in this study for adjusting SSTs in conjunction with a given sea-ice change can help to model the atmospheric response to sea-ice loss more accurately.  相似文献   

14.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   

15.
周璐  徐世明  曾刚 《大气科学》2017,41(1):57-70
本文利用美国华盛顿大学的PIOMAS海冰模式输出结果,分析了20世纪90年代以来北极海冰减少的动力和热力过程的特征,并探讨了海冰减少与北极大气环流模态之间的关系。结果表明:(1)通过弗拉姆海峡输出的多年冰的厚度自1995年以来有显著减少;(2)海冰的热力过程在20世纪90年代以后特别是21世纪以来是海冰减少的主导因素;(3)大气模态中的北极涛动(AO)和北极偶极子(AD)均对北极海冰的动力输出有影响,各自与海冰输出量的相关关系显著,并且AO和AD的多元线性回归能很好的拟合出海冰输出量的减少。  相似文献   

16.
Declining summer snowfall in the Arctic: causes, impacts and feedbacks   总被引:1,自引:0,他引:1  
Recent changes in the Arctic hydrological cycle are explored using in situ observations and an improved atmospheric reanalysis data set, ERA-Interim. We document a pronounced decline in summer snowfall over the Arctic Ocean and Canadian Archipelago. The snowfall decline is diagnosed as being almost entirely caused by changes in precipitation form (snow turning to rain) with very little influence of decreases in total precipitation. The proportion of precipitation falling as snow has decreased as a result of lower-atmospheric warming. Statistically, over 99% of the summer snowfall decline is linked to Arctic warming over the past two decades. Based on the reanalysis snowfall data over the ice-covered Arctic Ocean, we derive an estimate for the amount of snow-covered ice. It is estimated that the area of snow-covered ice, and the proportion of sea ice covered by snow, have decreased significantly. We perform a series of sensitivity experiments in which inter-annual changes in snow-covered ice are either unaccounted for, or are parameterized. In the parameterized case, the loss of snow-on-ice results in a substantial decrease in the surface albedo over the Arctic Ocean, that is of comparable magnitude to the decrease in albedo due to the decline in sea ice cover. Accordingly, the solar input to the Arctic Ocean is increased, causing additional surface ice melt. We conclude that the decline in summer snowfall has likely contributed to the thinning of sea ice over recent decades. The results presented provide support for the existence of a positive feedback in association with warming-induced reductions in summer snowfall.  相似文献   

17.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

18.
Polar climate studies are severely hampered by the sparseness of the sea ice observations. We aim at filling this critical gap by producing two 5-member sea ice historical simulations strongly constrained by ocean and atmosphere observational data and covering the 1958–2006 and 1979–2012 periods. This is the first multi-member sea ice reconstruction covering more than 50 years. The obtained sea ice conditions are in reasonable agreement with the few available observations. These best estimates of sea ice conditions serve subsequently as initial sea ice conditions for a set of 28 3-year-long retrospective climate predictions. We compare it to a set in which the sea ice initial conditions are taken from a single-member sea ice historical simulation constrained by atmosphere observations only. We find an improved skill in predicting the Arctic sea ice area and Arctic near surface temperature but a slightly degraded skill in predicting the Antarctic sea ice area. We also obtain a larger spread between the members for the sea ice variables, thus more representative of the forecast error.  相似文献   

19.
An ocean model developed by the Institute of Marine Research and the University of Bergen in Norway (BOM) and a state-of-the-art sea ice model developed by NCAR (CSIM4) are coupled, Considering influences of 9 major rivers,forced by the NCEP reanalysis atmospheric fields and the Levitus surface salinity,the Arctic sea ice climatic variation from January 1949 to December.1999 was simulated through the coupled model.The comparison of simulated results and observations shows that:(1)the long-term ice concentration variation tendencies are in consistent with the observations in the divisional ocean regions;(2)simulated ice thickness horizontal distribution is reasonable.Simulated ice thickness has a decreasing tendency in the central Arctic,which agrees with the submarine observations.Simulated annually maximum ice thickness is highly related to observed fast-ice thickness off the Russian coast;and (3)sea ice area/volume fluxes through the Fram Strait are in accord with the satellite-derived data.Generally,the coupled model successfully simulated the Arctic Ocean sea ice climatic variation.  相似文献   

20.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号