首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 890 毫秒
1.
【研究目的】海冰模式CICE (Los Alamos sea ice model)作为当前国际上的主流海冰模式之一,已被耦合进了大部分地球系统模式,对该模式模拟能力的评估工作是发展地球系统模式的重要参考依据。【创新点】通过观测数据与不同版本CICE模式对北极海冰数值模拟结果进行对比分析,研究了最新版本CICE6.0模拟能力及优势。【重要结论】CICE6.0模拟结果的年际误差最小,且季节变化与观测值最为吻合。相较而言,CICE4.0严重高估了冬季海冰总面积及低估了夏季海冰总面积,而CICE5.0在冬季的误差明显大于其他版本。此外,我们也关注了三个模式对多年冰和季节冰的模拟效果,从其均方根误差空间分布看出:模拟误差主要出现在中央海区及其周边海域。CICE4.0和CICE5.0在这些区域模拟的多年冰偏少、季节冰偏多,均低估了多年冰的变化趋势,且高估了季节冰的变化趋势;CICE6.0很好地解决了这些问题,其模拟的多年冰和季节冰的趋势最接近观测值,特别在北冰洋中部。总的来说,CICE6.0模拟的北极海冰在各方面都优于其他版本。  相似文献   

2.
国家气候中心气候系统模式BCC_CSM2.0最新耦合了美国Los Alamos国家实验室发展的海冰模式CICE5.0,为试验模式中与反照率相关参数的敏感性及其对模拟结果的影响,提高模式对北极海冰的模拟能力,选取海冰模式中3个主要参数进行了敏感性试验。利用以BCC_CSM2.0耦合框架为基础建立的海冰-海洋耦合模式,选取CORE资料为大气强迫场开展试验,试验的3个参数分别为冰/雪表面反射率、雪粒半径和雪粒半径参考温度。结果表明,参数取值的不同对北极海冰的模拟有显著的影响,优化后的取值组合极大提高了模式的模拟能力,主要表现在:(1)改善了对北极冬季海冰厚度的模拟,海冰厚度增大,与观测资料更为吻合;(2)显著提高了对北极夏季海冰密集度的模拟能力,从而模拟的北极海冰范围年际循环与观测更为一致。参数取值的优化改进了模式对海冰反照率的模拟,进而影响了冰面短波辐射的吸收和海冰表层的融化,最终提高了模式对海冰密集度和厚度的模拟效果。   相似文献   

3.
国家气候中心气候系统模式(BCC_CSM)将美国Los Alamos国家实验室发展的海冰模式CICE5.0替代原有的海冰模式SIS,形成一个新版本耦合模式,很好地提高了模式对北极海冰和北极气候的模拟能力。在此基础上,本文评估新耦合模式对1985—2014年东亚冬季气候的模拟性能,检验北极海冰模拟性能的改进对东亚冬季气候模拟性能的影响。结果表明,引入CICE5.0后,新耦合模式能较好地模拟出东亚冬季海平面气压、850 hPa风场以及辐射通量,进而改善东亚气温以及降水的气候态空间分布模拟效果。进一步分析发现,与原有耦合模式相比,新耦合模式更好地抓住了东亚冬季海平面气压、总降水量和气温异常对同期巴伦支海-喀拉海海冰密集度异常的响应,进而提高了模式对东亚冬季中高纬度地区气温以及降水变率的模拟能力。  相似文献   

4.
海冰模式CICE4.0与LASG/IAP气候系统模式的耦合试验   总被引:3,自引:2,他引:1  
利用美国Los Alamos国家实验室发展的最新海冰模式(CICE4.0)替代了LASG/IAP气候系统模式(FGOALS_g1.1)中的海冰模式(CSIM4), 形成新的耦合模式。在此基础上, 利用新的耦合模式对20世纪中后期的全球气候进行了模拟, 来检验CICE4.0对耦合模式中海冰和海洋模拟结果的改进。结果表明CICE4.0对于FGOALS_g1.1的极地气候模拟有一定改进作用, 主要表现在:(1) 南北极海冰边缘碎冰区显著减少; (2) 南大洋海表温度和海冰的模拟明显改善, 分布特征与观测非常吻合。但是新耦合模式也存在如下不足: (1) 北大西洋海冰相对偏多, 北大西洋经圈翻转环流大大减弱, 这主要是由于北大西洋海表面温度的冷误差造成的; (2) 南北极大气环流场的模拟无明显改善。此外, 本文还比较了采用不同短波辐射方案对于耦合模拟结果的影响, 结果表明, 相对于CCSM3短波辐射方案, Delta-Eddington方案模拟的海表面温度偏冷, 海冰厚度偏厚, 北大西洋经圈翻转环流略有偏弱。  相似文献   

5.
利用最近发展的MITgcm(麻省理工学院通用环流模式)海冰-海洋耦合模式,以NCEP(美国国家环境预测中心)再分析资料为大气强迫场进行了1992年1月至2009年12月北极海冰数值模拟.结果表明,此模式能很好地模拟卫星观测的北极海冰季节和年际变化,具备很好的北极海冰数值模拟能力.以此为基础,对2009年7月和10月北极...  相似文献   

6.
BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析   总被引:3,自引:0,他引:3  
本文评估了国家气候中心发展的BCC_CSM模式对全球海冰的模拟能力,结果表明:该气候系统模式能够较好地模拟出全球海冰面积和厚度的时空分布特征,且南半球海冰模拟能力优于北半球。通过对比分析发现:年平均海冰面积模拟误差最大的区域位于鄂霍次克海、白令海和巴伦支海等海区,年平均海冰厚度分布与观测相近,在北半球冬季模拟的厚度偏薄;从海冰季节变化来看,模拟的夏季海冰面积偏低,冬季偏高;从海冰年际变化来看,近60年南北半球海冰面积模拟都比观测偏多,但南半球偏多幅度较小,然而北半球海冰年际变化趋势的模拟却好于南半球。另外,通过对海冰模拟误差成因分析,发现模拟的净辐射能量收入偏低使得海温异常偏冷,是导致北半球冬季海冰模拟偏多的主要原因。  相似文献   

7.
1966~1991年北极海冰模拟结果与观测的对比   总被引:5,自引:0,他引:5  
利用宇如聪等1995年建立的北极区域冰-洋耦合模式,以1966~1991年期间逐月的月平均实测海平面气温和气压场为强迫场,模拟了上述26年间北极海冰的时间演变和空间分布,着重分析了大西洋及欧洲沿岸一侧的巴伦支海和格陵兰海的海冰状况,并与目前能够得到的北极海冰密集度观测资料做了对比,结果表明:(1)模式对巴伦支海海冰年际变化的模拟是比较成功的,表现在不仅模拟的1969~1979和1979~1987这两个时段的主要变化趋势和观测事实比较一致,而且模拟出了1979和1984这两个多冰和少冰的极端年份。模拟的主要  相似文献   

8.
一个热动力海冰模式的改进与实验   总被引:2,自引:0,他引:2  
影响海冰变化的物理因素中热力和动力部分是同等重要的,但多数热动力海冰模式的热力部分考虑得较为简单。针对Hibler热动力海冰模式的不足,以1个3层热力模式为基础改进了其热力部分。比较了原模式中的零层热力模式和用于改进的3层热力模式;并应用改进前后的两种热动力模式对1983年的北极海冰进行了模拟。模拟结果表明,海冰厚度比原模式厚,季节变化减弱,海冰密集度与观测资料更为符合。  相似文献   

9.
FGOALS_g1.1极地气候模拟   总被引:1,自引:0,他引:1  
对中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候 系统模式FGOALS-g1.1的极地气候模拟现状进行了较为全面的评估。结果表明,FGOALS- g1.1对南北极海冰的主要分布特征、季节变化和年代际变化趋势具有一定的模拟能力。但也 注意到,与观测相比,模式存在以下几方面的问题:(1) 模拟的海冰总面积北极偏多,而南 极偏少。北极,北大西洋海冰全年明显偏多;夏季,西伯利亚沿海海冰偏多,而波弗特海 海冰偏少。南极,威德尔海和罗斯海冬季海冰偏少。南北极海冰边缘都存在异常的较大范 围密集度很小的碎冰区,夏季尤为显著。(2) 海冰流速在南北极海冰边缘和南极大陆沿岸附 近较大。北极,模式没能模拟出波弗特涡流,并且由于模式网格中北极点的处理问题,造成 其附近错误的海冰流场及厚度分布。这些海冰偏差与模式模拟的大气和海洋状况有着密切的 联系。进一步分析表明,FGOALS-g1.1模拟的冰岛低压和南极绕极西风带明显偏弱, 其通过大气环流和海表面风应力影响向极地的热量输送,在很大程度上导致上述的海冰偏差 。此外,耦合模式中大气-海冰-海洋的相互作用可以放大子模式中的偏差。  相似文献   

10.
FGOALS_gg1.1极地气候模拟   总被引:4,自引:0,他引:4  
对中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统模式FGOALS_g1.1的极地气候模拟现状进行了较为全面的评估.结果表明,FGOALS_g1.1对南北极海冰的主要分布特征、季节变化和年代际变化趋势具有一定的模拟能力.但也注意到,与观测相比,模式存在以下几方面的问题:(1)模拟的海冰总面积北极偏多,而南极偏少.北极,北大西洋海冰全年明显偏多;夏季,西伯利亚沿海海冰偏多,而波弗特海海冰偏少.南极,威德尔海和罗斯海冬季海冰偏少.南北极海冰边缘都存在异常的较大范围密集度很小的碎冰区,夏季尤为显著.(2)海冰流速在南北极海冰边缘和南极大陆沿岸附近较大.北极,模式没能模拟出波弗特涡流,并且由于模式网格中北极点的处理问题,造成其附近错误的海冰流场及厚度分布.这些海冰偏差与模式模拟的大气和海洋状况有着密切的联系.进一步分析表明,FGOALS_g1.1模拟的冰岛低压和南极绕极西风带明显偏弱,其通过大气环流和海表面风应力影响向极地的热量输送,在很大程度上导致上述的海冰偏差.此外,耦合模式中大气-海冰-海洋的相互作用可以放大子模式中的偏差.  相似文献   

11.
This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed.  相似文献   

12.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

13.
北极海冰的气候变化与20世纪90年代的突变   总被引:5,自引:0,他引:5  
应用英国Had ley气候研究中心1968~2000年的1°×1°的北半球逐月海冰密集度资料,使用EOF分解等统计方法,探讨北极海冰的气候变化趋势、海冰的突变、海冰的季节持续性和各季的特色。结果表明:(1)自1968年以来,北极海冰的减小是北半球海冰变化的总趋势;海冰的趋势变化在海冰的年际总变化中占有相当重要的地位,可达50%左右。冬春季主要减少区域在格陵兰海、巴伦支海和白令海;夏秋季海冰减少是唯一趋势,中心在北冰洋边缘的喀拉海、拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海。(2)20世纪80年代中后期北极海冰已出现减小趋势,在20世纪90年代,海冰又出现范围和面积的突然减少,中心在格陵兰海和巴伦支海;即海冰减少是加速的,其变化程度已远远超过一般的自然变化。(3)海冰有很好的季节持续性,有很强的隔季相关,也有较好的隔年相关;各季节海冰分布型之间有很好的联系,表现为海冰分布型的总体变化趋势是一致的,在海冰的减少中也体现了分布型的特征。  相似文献   

14.
A regional Arctic Ocean configuration of the Massachusetts Institute of Technology General Circulation Model(MITgcm)is applied to simulate the Arctic sea ice from 1991 to 2012.The simulations are evaluated by comparing them with observations from different sources.The results show that MITgcm can reproduce the interannual and seasonal variability of the sea-ice extent,but underestimates the trend in sea-ice extent,especially in September.The ice concentration and thickness distributions are comparable to those from the observations,with most deviations within the observational uncertainties and less than 0.5 m,respectively.The simulated sea-ice extents are better correlated with observations in September,with a correlation coefficient of 0.95,than in March,with a correlation coefficient of 0.83.However,the distributions of sea-ice concentration are better simulated in March,with higher pattern correlation coefficients(0.98)than in September.When the model underestimates the atmospheric influence on the sea-ice evolution in March,deviations in the sea-ice concentration arise at the ice edges and are higher than those in September.In contrast,when the model underestimates the oceanic boundaries’influence on the September sea-ice evolution,disagreements in the distribution of the sea-ice concentration and its trend are found over most marginal seas in the Arctic Ocean.The uncertainties of the model,whereby it fails to incorporate the atmospheric information in March and oceanic information in September,contribute to varying model errors with the seasons.  相似文献   

15.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

16.
冬春季节北极海冰的年际和年代际变化   总被引:6,自引:0,他引:6  
利用1953~1990年海冰密集度资料,研究了冬、春季节北极海冰的时空变化特征.结果表明:冬,春季节海冰变率大的海区主要有巴伦支海、格陵兰海、巴芬湾、戴维斯海峡以及白令海;在巴芬湾、戴维斯海峡和白令海海区,冬季海冰变率比春季的大;冬、春季节喀拉海、巴伦支海海冰面积均与春季白令海海冰面积呈反向变化关系,与巴芬湾、戴维斯海峡海冰面积也存在相反的变化趋势.分析还表明:北极海冰面积还表现出年代际时间尺度变化,尤其在冬季.春季格陵兰海海冰明显存在12年变化周期,而在冬、春季节,喀拉海、巴伦支海海冰存在l0年变化周期.  相似文献   

17.
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号