首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用2005-2008年青藏高原(下称高原)地区微波临边探测器MLS(Microwave Limb Sounder)、高光谱分辨率大气红外探测仪AIRS(Atmosphere Infrared Sounder)、ECMWF的ERA-Interim资料,以及NCEP/NCAR再分析数据和NOAA HYSPLIT(Hybrid Single-Particle Lagrangian Integrated Trajectory Model)轨迹模式资料,讨论了高原上空对流层顶附近的水汽分布和变化特征及高原上空平流层与对流层之间的物质交换。结果表明,3-4月高原南侧对流层顶附近100 hPa存在一个水汽低值带,而7-8月和9-10月此处存在一个明显的水汽高值区。3-4月夏季风未发展之前,受高原大地形抬升和西风气流的影响,高原以南地区存在对流层与平流层的物质交换,而215 hPa的高原中部地区(80°E-90°E)则由于空气的下沉运动将上层的干空气向下输送而出现一个水汽低值中心。7-8月,受印度夏季风和高原上空反气旋式环流的影响,高原上空有明显的水汽穿过对流层顶向平流层输送,反气旋环流中心的水汽经过2~4天的上升过程可以从对流层进入平流层。高原及其以东、以西地区的水汽在对流层顶附近的季节变化基本一致,100 hPa三个不同区域的水汽在3月达到最低。  相似文献   

2.
夏季南亚高压与邻近上对流层下平流层区水汽变化的联系   总被引:1,自引:0,他引:1  
利用1979-2015年ERA-interim月平均再分析资料,分析了夏季南亚高压(SAH)与邻近上对流层下平流层(UTLS)区水汽空间分布特征,讨论了二者的相关关系和因果联系。结果表明:(1)在对流层上层,水汽大值区位于南亚高压的东南侧,并随高度升高向西北倾斜到100 hPa,水汽大值中心基本位于南亚高压中心附近。(2)南亚高压偏强(弱)时,南亚高压东部UTLS区水汽显著偏多(少),而南亚高压西北部水汽异常不显著。(3)南亚高压偏强(弱)时南亚高压中部UTLS区水汽偏多(少)可能与南亚高压对水汽的抽吸和对水汽输送屏障有关。(4)而南亚高压东南侧UTLS区水汽偏多(少)时南亚高压偏强(弱)可能与深对流输送的水汽潜热释放有关。   相似文献   

3.
利用欧洲中期数值预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的ERA-Interim再分析资料和Aura卫星上微波临边探测器MLS(Microwave Limb Sounder)提供的大气成分资料,研究了南亚高压的南北位移与亚洲季风区上对流层-下平流层区域水汽、一氧化碳(CO)和臭氧(O_3)分布之间的关系。结果表明:(1)在215 hPa,南亚高压偏北时,水汽和CO在伊朗高原、青藏高原东北部至中国东北地区比偏南时高,仅在孟加拉湾以北和中南半岛北部比偏南时低。在100 hPa,偏北时南亚高压控制范围内水汽比偏南时高,而CO则是偏南时偏高。下平流层68 hPa,南亚高压控制范围内偏北时的CO弱于偏南时。O_3在不同高度的分布与CO相反。(2)南亚高压偏北时,高压西部及北部对流比偏南时强,30°N以北南亚高压强度也较强,将对流层低层空气向上输送,导致上对流层215 hPa的水汽和CO在伊朗高原、青藏高原东北部至中国东北地区比偏南时高,而O_3被稀释成为低值中心。(3)在100 hPa,南亚高压偏南时,反气旋环流南部的位势高度偏高,同时反气旋环流中心垂直上升运动较强,将含丰富的水汽和CO以及低浓度O_3的空气向上输送,导致100 hPa上CO的高值中心浓度比偏北强,O_3的低值中心浓度比偏北低。而偏南时南亚高压控制区内对流层顶温度偏低,在"冷凝脱水"作用下,偏南时的水汽反而比偏北低。(4)100 hPa南亚高压偏南时强度比偏北弱,"围困"作用也弱,在上升运动作用下,将更多的高浓度水汽和CO以及低浓度O_3空气向上输送到68 hPa。  相似文献   

4.
《高原气象》2021,40(4):747-759
利用欧洲中期天气预报中心(ECMWF)提供的1979-2016年ERA-Interim再分析资料分析了中国4个地区夏季大气水循环变量和气温时空特征,并通过相关分析、SVD方法及环流场合成分析进一步揭示了气温变化对云水含量的影响。结果表明:中国夏季云水含量空间分布从东南向西北减少。高原区云水含量与气温正相关,其他地区为显著负相关。西北地区升温使西风带水汽输送减弱和蒙古东部异常反气旋环流维持,北方地区升温使东北至蒙古异常反气旋和东南沿海异常气旋维持,西北太平洋副热带高压(副高)东撤,二者均使200 hPa西风急流减弱,水汽输送和上升运动减弱,云水含量减少。南方地区升温使黄海异常反气旋和南海异常气旋维持,副高东撤,200 hPa西风急流偏北,不利于水汽输送和上升运动,云水含量减少。高原地区升温使西风带南支和高原西部异常气旋加强,副高西伸北抬,高原北侧西风急流和南亚高压增强,促进水汽输送和低层辐合上升,使云液水含量增加。  相似文献   

5.
利用1948—2016年NCEP/NCAR月平均再分析资料,对南亚高压的水平与垂直结构、中心强度、位置及多年变化特征进行分析。结果表明:与多年平均相比,在上对流层下平流层区域(70、100、150、200 hPa),不同典型异常年份南亚高压的水平结构表现出双中心、纬向与经向跨度变大的特征,但不同高度其水平范围变化不同。近69 a对南亚高压内部空气束缚的东风急流最大风速整体呈减弱趋势,而西风急流的最大风速则无明显变化趋势。南亚高压的热力和动力垂直结构在不同年份有所不同,即东、西风急流强度和温度异常存在年际差异。1948—2016年南亚高压的厚度有明显的年际变化,大致为6.32~6.42 km。各高度南亚高压中心位势高度值在1975—1980年间均上升了0.1 gpkm左右,且中心位置存在东西振荡和南北位移,但这种变化幅度存在一定差异。  相似文献   

6.
两种厄尔尼诺类型期高原地区大气环流的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用NCEP/NCAR再分析资料,分析了增温区域不同的两类El-Nino事件各阶段的特征,及其次年夏季高原地区的风场、温度场以及高原上空的南亚高压的高度场分布特征。结果表明:对风场环流的不同影响主要表现在:从垂直剖面图来看EP型整体都是东风增强,而CP型在对流层的中下层为西风增强,上层为东风增强;200hPa风场EP型高原上空为异常东风,而CP型为一异常切变线,北边异常东北风,南边异常东南风;500hPa风场EP型表现为异常东北风,CP型为异常东南风。对温度场的不同影响主要表现在:EP型在高原上空对流层中层和高层各有一个负异常中心,而CP型只在中层有一个负异常中心;对南亚高压的不同影响主要表现在:EP型南亚高压中心位置偏东南,而CP型南亚高压中心位置则偏北。   相似文献   

7.
基于1979~2017年欧洲中期天气预报中心(ECMWF)全球大气数值预报再分析资料ERA-Interim提供的地表潜热及大气环流再分析资料和英国Hadley气候预测和研究中心提供的全球逐月海表温度格点资料以及新疆气象信息中心提供的塔里木盆地26个站逐月降水资料,研究了夏季青藏高原和热带印度洋热力异常对塔里木盆地夏季降水的影响。结果表明:高原北部潜热偏强(弱)和热带印度洋海温偏暖(冷)时,200 hPa纬向风表现为“北负(正)南正(负)”的特征,中亚和贝加尔湖上空分别为异常气旋(反气旋)和异常反气旋(气旋),在二者共同作用下,塔里木盆地上空盛行偏南(北)风,印度半岛上空为异常反气旋(气旋),有利(不利)于将低纬度水汽向北输送,配合中亚上空的异常气旋(反气旋),有利(不利)于水汽进入新疆地区,对应塔里木盆地夏季降水偏多(少)。同时发现塔里木盆地夏季降水与中亚对流层中高层的温度异常(MUTTI)表现为显著的负相关关系,同时MUTTI与高原潜热和印度洋海温的负相关关系显著,夏季高原潜热偏强(弱)时,高原季风偏强(弱),印度洋海温偏暖(冷),南亚季风偏弱(强),在二者共同作用下中亚对流层关键区中高层温度偏低(高),其通过影响200 hPa纬向风、500 hPa环流和整层水汽输送进一步影响塔里木盆地夏季降水。  相似文献   

8.
杨凯  胡田田  王澄海 《大气科学》2017,41(2):345-356
青藏高原冬、春积雪有着显著的南、北空间差异,本文利用通用地球系统模式(CESM)设计了增加高原南、北冬、春积雪的敏感性试验,结果表明:当高原南部冬、春积雪异常偏多,长江及其以北地区夏季降水偏多,华南大部分地区夏季降水偏少;而当高原北部冬、春积雪异常偏多,华北及东北地区夏季降水偏多,长江下游南部地区夏季降水偏少,雨带更偏北。青藏高原南、北部冬、春积雪异常影响中国东部夏季降水的物理机制的分析结果表明,高原不同区域(南部和北部)冬、春积雪异常引起的非绝热加热异常效应都可持续到夏季,且北部积雪异常持续时间更长。高原南部和北部积雪异常偏多均会减弱高原北侧上空大气的水平温度梯度,进而减弱高原北侧西风急流的位置及强度,进而影响下游出口区处急流的强度和位置,且高原北部积雪异常偏多的影响更大。当高原南部积雪异常偏多,急流出口区的西风急流加强且偏南;而高原北部积雪异常偏多,出口区的西风急流减弱且偏北。相应地,对流层中层500 hPa西太平洋副热带高压减弱,低层850 hPa异常反气旋环流,影响中国东部地区水汽输送,从而影响了中国东部地区夏季雨带的变化。当高原南部积雪异常偏多,异常反气旋性环流位于东海附近,有利于更多水汽输送至长江流域,华南水汽输送减少;当高原北部积雪异常偏多,异常反气旋性环流相对偏北,更有利于华北及东北水汽输送,雨带偏北。  相似文献   

9.
夏季7~8月青藏高原及周边地区上对流层水汽质量的年际异常分布为整体异常型和东西偶极异常型所主导。本文基于ERA-Interim再分析资料并利用HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)轨迹模式,分析了两个主导分布型对应的水汽质量向平流层绝热和非绝热传输的异常特征,结果表明:青藏高原上空水汽质量整体偏多(少)时,对应南亚高压和青藏高原地区垂直向上的水汽质量非绝热输送偏强(弱),青藏高原及周边水汽质量向平流层的绝热和非绝热传输均偏强(弱)。水汽质量整体偏多与偏少年,水汽质量向平流层绝热和非绝热传输的主要区域和层次相近,只是水汽质量整体偏多年,水汽质量向平流层非绝热传输的层次略高。当青藏高原上空水汽质量呈西多/东少分布时,对应南亚高压偏西,青藏高原西北、东北侧水汽质量向中纬度平流层的绝热传输偏强,青藏高原南侧高层水汽质量向热带平流层的经向绝热传输也偏强,而青藏高原北侧水汽质量向中纬度平流层的经向绝热传输明显减弱。同时青藏高原主体上空水汽质量向平流层的非绝热传输偏强,而青藏高原南侧高层和北侧低层水汽质量向平流层的非绝热传输偏弱。水汽质量呈西少/东多分布时有相反的结果。轨迹模式模拟的结果证实了水汽质量整体偏多年,青藏高原及周边地区绝热进入平流层的轨迹频次偏多;也证实了水汽质量呈西多/东少分布时,青藏高原西北、东北和南侧绝热进入平流层的轨迹频次偏多,而青藏高原北侧绝热进入平流层的轨迹频次偏少。  相似文献   

10.
夏季东亚西风急流扰动异常与副热带高压关系研究   总被引:7,自引:1,他引:7       下载免费PDF全文
利用1979—2003年NCEP/NCAR月平均再分析资料, 探讨夏季 (6—8月) 200 hPa东亚西风急流扰动异常与南亚高压和西太平洋副热带高压的关系。研究指出:夏季200 hPa东亚西风急流扰动动能加强 (减弱), 东亚西风急流位置偏南 (偏北)、强度偏强 (偏弱); 东亚西风急流扰动动能强弱不仅与北半球西风急流强弱和沿急流的定常扰动有关, 而且还与东亚地区高、中、低纬南北向的扰动波列有关, 亚洲地区是北半球中纬度环球带状波列异常最大的区域。夏季200 hPa东亚西风急流扰动动能加强 (减弱), 南亚高压的特征为位置偏东 (偏西)、强度加强 (减弱); 西太平洋副热带高压的特征为位置偏南 (偏北)。东亚环流特别是500 hPa西太平洋副热带高压对东亚西风带扰动异常的响应由高空东亚西风急流南侧的散度场及其对流层中下层热带和副热带地区的垂直速度距平场变化完成。  相似文献   

11.
青藏高原横切变线(简称切变线)是引发青藏高原夏季暴雨的主要天气系统之一。本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,简称ECMWF)提供的ERA-5再分析资料,选取14个生成于6~8月、生命史为38小时且引发高原暴雨的切变线个例进行合成分析,探究动力和热力作用对夏季切变线生成和强度演变的影响。结果表明:(1)500 hPa切变线生成于伊朗高压和西太平洋副热带高压两高之间的鞍形场中,处于580 dagpm闭合低值中心和272 K高温中心内,比湿大值区的北侧;200 hPa南亚高压北部边缘、西风急流入口区南侧。(2)切变线强度表现出明显的日变化特征,在当地时间(LT=UTC+6h)23时最强,13时最弱。(3)涡度收支诊断表明,青藏高原上空高低层散度变化对切变线强度变化具有指示意义,500 hPa涡度最大值(最小值)出现时间滞后于辐合作用最大值(最小值)3小时。(4)切变线演变过程中,切变线发展时位涡随之增大。位涡收支诊断表明,青藏高原上空的水汽和非绝热加热对切变线的生成和发展演变起到重要作用。当边界层感热加热增强时,低层辐合增强,上升运动增强,在充足的水汽配合下,凝结潜热释放使非绝热加热中心抬高至大气中层,从而有利于切变线生成及发展。  相似文献   

12.
2007年7月新疆三次暴雨过程的水汽特征分析   总被引:6,自引:0,他引:6  
杨莲梅  张云惠  汤浩 《高原气象》2012,31(4):963-973
利用新疆99个气象站日降水量资料和NECP/NCAR一天4次1°×1°再分析资料,分析了2007年7月8-11日、15-17日和27-29日新疆3次暴雨过程的水汽输送和收支特征。雨型I(8-11日)的雨带位于天山山区及其北麓,雨型II(15-17日)的雨带位于新疆东部地区,雨型III(27-29日)的雨带位于天山以北的北疆地区。结果表明,这3种典型雨型的水汽输送路径有明显的差异,雨型I存在西风气流、河西走廊至新疆的低空偏东急流和青藏高原向北气流3支水汽输送路径,西方路径水汽输送量最大,这3支水汽输送气流在天山山区及其北麓强辐合并引发暴雨。这是由700hPa贝加尔湖脊发展、对流层中亚低涡强烈发展、快速东移和500hPa新疆脊逐渐东移所造成的。雨型II的水汽输送为西方、东方、南方和北方路径,4支水汽在东—西向和南—北向强辐合并引发暴雨。这种异常的水汽输送是由700hPa柴达木低压发展、500hPa乌拉尔脊东北向发展、中亚低涡东南移动和新疆脊配置所致。雨型III主要为西风气流和贝加尔湖至新疆低空偏东急流输送水汽,东、西方水汽在天山以北区域发生强辐合并造成暴雨,偏东水汽输送来自于贝加尔湖、孟加拉湾、南海和热带西太平洋,其水汽输送量大于西方路径。这种异常水汽输送是由中亚低涡东移、西太平洋副热带高压北伸与贝加尔湖脊叠加且贝加尔湖脊西伸配置所造成的。  相似文献   

13.
青藏高原对流层顶高度与臭氧总量及上升运动的耦合关系   总被引:5,自引:2,他引:3  
根据1979-2008年青藏高原地区14个探空站对流层项气压资料以及同期各标准等压面上的温度资料,分析了不同季节高原上空两类对流层顶高度与高空各层温度之间的关系;在此基础上,结合同期的NCEP/NCAR月平均再分析资料以及NASA提供的TOMS/SBUV月平均臭氧总量资料,分别讨论了高原上升运动以及高原臭氧总量与对流层顸高度的耦合关系。结果表明:高原第一(二)对流层顶高度全年处在300~200hPa(100hPa附近)高度,在季节变化、年际变化以及长期变化趋势上,两类对流层顸高度与各自对应高度层上的温度存在着密切的反相变化关系,当对流层顶高度偏高(低)时,相应高度上的温度偏低(高)。上升运动有助于两类对流层顶高度的抬升,尤其是当高空200(100)hPa附近有上升运动时,有利于第一(二)对流层项高度抬升。各季节高原臭氧总量与第二对流层顶高度均呈显著的负相关关系,当臭氧含量减少(增加)时,该对流层顶高度将偏高(偏低),近年来伴随着高原臭氧总量的减少,高原第二对流层顸高度出现了明显的抬升。  相似文献   

14.
张硕  姚秀萍  巩远发 《气象学报》2019,77(6):1086-1106
利用1981—2016年6—8月每天4次,分辨率为1°×1°的ERA-Interim再分析资料,基于纬向风的经向切变、纬向风速0线和相对涡度3个参数,在计算机客观自动判识青藏高原横切变线(简称高原横切变线)基础上,选取位于33°—35°N的高原横切变线个例13个,采用合成分析技术,研究了高原横切变线结构及演变特征。表明高原横切变线位于青藏高原主体80°—100°E范围内,在500 hPa呈东西走向、水平尺度近2000 km,垂直方向在高原上空可伸展至480 hPa、厚度可达近2 km。高原横切变线出现的环流背景是:500 hPa高纬度两槽两脊,青藏高原两侧分别为带状分布的西太平洋副热带高压(西太副高)和伊朗高压。在动力场上,高原横切变线走向与500 hPa正涡度带轴线走向一致,切变线附近为带状的涡度正值区和上升运动区,对应于无辐散带,辐散/辐合带分布在高原横切变线北/南侧;高原横切变线附近正涡度带垂直可伸展到350 hPa,上升运动伸展至200 hPa,但高原横切变线仅至480 hPa左右,为浅薄的斜压性天气系统,呈现随高度升高向北倾斜的特征。在水汽热力场上,高原横切变线是水汽汇聚带;高原横切变线附近南侧的600—500 hPa存在高假相当位温中心,具有非常明显的高温、高湿特征。高原横切变线从初始产生到发展强盛再减弱的演变过程中,其生命期近4 d,伴随西太副高西移过程,随着高原横切变线附近正涡度带范围增大、强度增强,高原横切变线发展,干冷空气的侵入导致高原横切变线强度减弱甚至消亡。   相似文献   

15.
东亚副热带急流与东北夏季降水异常的关系   总被引:9,自引:3,他引:6  
兰明才  张耀存 《气象科学》2011,31(3):258-265
利用东北地区88个气象站点观测的7、8月(夏季)降水量和NCEP/NCAR再分析资料,分析了东北地区夏季降水与同期东亚副热带西风急流之间的关系,发现东北地区夏季降水异常偏多年,位于青藏高原上空200 hPa西风急流中心强度偏强,东北地区上空急流轴向东北方向倾斜;东北地区夏季降水异常偏少年,青藏高原上空200 hPa西风...  相似文献   

16.
利用Aura卫星微波临边观测仪(Microwave Limb Sounder,MLS)数据,评估了ERA-I、MERRA、JRA-55、CFSR和NCEP2等5套再分析资料的水汽数据在青藏高原及周边上对流层-下平流层(Upper Troposphere and Lower Stratosphere,UTLS)的质量,然后选取其中质量较好的两套水汽数据,分析它们对青藏高原及周边UTLS水汽的时空分布和演变的表征能力。结果表明,与MLS数据相比,5套再分析资料中在UTLS普遍偏湿,最大偏湿在上对流层215 hPa,约为165%,而在下平流层,ERA-I和MERRA与MLS的差异相对较小。总的来看,ERA-I和MERRA表征的水汽与MLS更为接近。进一步的对比表明,ERA-I和MERRA中青藏高原及周边水汽含量的时空分布与MLS较为接近,夏季能够表征青藏高原在纬向和经向上的水汽高值区,冬季能够表征对流层顶、西风急流中心附近的水汽梯度带,而且MERRA的结果要好于ERA-I。ERA-I、MERRA和MLS中青藏高原地区的水汽季节演变都表现为冬季1-2月水汽含量低,夏季7-8月水汽含量高,水汽的季节变化在200~300 hPa最大。MLS资料显示,在青藏高原地区对流层顶附近,存在随时间向上向极的水汽传输信号。相较而言,ERA-I对向上水汽传输信号的表征更好,而MERRA对下平流层(100 hPa)向极水汽传输信号的表征更好。  相似文献   

17.
青藏高原大气热力异常对西风急流的影响   总被引:1,自引:0,他引:1  
本文基于NCEP/NCAR月平均再分析资料,分析了对流层上层200 hPa纬向西风的时空变化特征,并通过EOF分解得到一个表征西风急流位置的指数(Westerly Jet Position Index,WJPI);同时基于对流层中上层(500~200 hPa)温度纬向偏差,构建了一个描述青藏高原(简称高原)大气热力特征的指标(Plateau Atmosphere Heating Index,PAHI),定量分析了该指数与西风急流位置的关系。结果表明:由冬到夏西风急流轴不断北抬西伸,风速逐渐减小;各季西风急流轴均处于西风变率的小值区,表明各季急流均轴的位置较稳定。各季PAHI与200 hPa纬向风的显著正相关区均分布在高原北侧,即高原PAHI增强时,其北侧西风增强,南侧西风减弱,对流层上层西风急流北移;各季WJPI与PAHI之间均存在显著相关,表明PAHI异常对西风急流位置的变化有重要作用。  相似文献   

18.
中国东南部冬季降水变化及其环流特征   总被引:2,自引:2,他引:0       下载免费PDF全文
利用1951-2011年中国160站降水资料及NCEP/NCAR再分析资料,分析了中国东南部冬季降水的年际变化及与之相关的环流和水汽输送特征。结果表明:中国东南部冬季降水年际差异较明显,当降水异常偏多(少)时,蒙古高压及中国广大南方地区海平面气压异常偏低(高),而亚洲附近的洋面上则异常偏高(低);500 hPa上,巴尔喀什湖附近的高压脊和东亚大槽均偏弱(强);高层东亚西风急流异常偏弱(强),中东地区急流异常偏强(弱);中国东部20~30°N出现显著异常上升(下沉)运动,低纬度地区出现异常下沉(上升)运动。影响中国东南部冬季降水的水汽输送主要有两支:来自西风带绕高原的南支气流,经过阿拉伯海和孟加拉湾向华南的输送水汽;来自低纬西太平洋,经南海向中国西南的水汽输送。此外,东亚冬季风与中国东南部冬季降水关系密切。  相似文献   

19.
高空西风急流东西向形态变化对梅雨期降水空间分布的影响   总被引:17,自引:3,他引:14  
杜银  张耀存  谢志清 《气象学报》2008,66(4):566-576
利用40年的NCEP/NCAR再分析候平均资料和同期长江中下游地区逐日降水资料,使用合成方法分析了梅雨期东亚副热带高空西风急流的东西位置和形态变化特征,探讨了高空西风急流对梅雨期降水空间分布的影响.分析结果表明,梅雨期东亚大陆上空西风急流强度减弱且持续维持、西太平洋上空西风急流核分裂减弱直至出梅后消失,这是梅雨期200 hPa东亚高空西风急流东西向位置变化的主要特征.梅雨期,200 hPa副热带西风急流中心呈现东西向位置变化和海陆分布形态差异,西风急流中心东西向位置变化对梅雨起讫有着较好的指示意义.梅雨期东亚副热带高空西风急流东西形态分布差异不仅影响到长江中下游地区降水空间集中区的位置而且还影响到降水中心强度.进一步分析表明,当东亚西风急流主体位于西太平洋上空时,在长江下游地区形成高低空急流耦合的环流形势,强烈的辐合上升运动加上充足的水汽条件供应,有利于在长江下游形成集中的强降水区域.当高空西风急流位于东亚大陆上空时,在长江中下游地区高低空急流无耦合形势存在,长江中下游地区也没有强的集中降水区域.因此,东亚副热带高空西风急流东西向形态变化对长江中下游地区的高低空环流结构、地面集中降水区域的空间分布具有重要的影响.  相似文献   

20.
为了更全面地伊犁河谷极端暴雪发生发展的机制,利用常规探空和地面观测资料、FY-2H长波辐射资料(Outgoing Long-wave Radiation,OLR)和NCEP/NCAR1°×1°再分析资料,采用天气动力学分析方法对2022年11月22日-24日出现在伊犁河谷极端暴雪过程的成因和动力结构演变特征进行分析,结果表明:(1)此次降雪为强锋区降雪,锋区内不断有短波东移,是暴雪发生的大尺度环流背景;300hPa极锋急流、500hPa强锋区、700hPa强偏西急流的流场配置起至关重要作用。(2)低层冷空气入侵,迫使暖湿空气抬升、气温下降,形成了下冷上暖的强逆温层结,而导致降水相态转变。降雪持续时间长,导致强降雪发生。(3)低层偏西急流把水汽输送到暴雪区,并在暴雪区上方产生强的水汽辐合中心,为本次暴雪提供了有利的水汽条件。散度场对大暴雪的发生有较好的先兆意义,双辐合-辐散结构的散度场特征可以作为预报降雪加大的指标。(4)暴雪过程发生时大气处于对流稳定状态,但存在对称不稳定能量的释放。(5)OLR特征分析表明OLR3h平均值与3h降雪量存在明显的负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号