首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
<正>1大雾过程2014年10—12月,江西省出现区域性大雾(全省单日15站以上大雾)日数为7 d,与常年相比偏少。11月29—30日和12月29—30日分别出现两次连续性大雾天气过程。其中第二次大雾范围非常广,强度强,上栗、弋阳、金溪等6个县能见度不足200 m,永丰一度出现能见度40 m左右的强浓雾。  相似文献   

2.
徐渝江 《四川气象》2007,27(4):56-56
1雾的危害2007年5月,京珠高速公路614公里处河南新乡段因浓雾突发,连续发生多起追尾事故,百余辆车相撞,事件过程中,200余人参加了事故大营救。在成都,自2007年12月20日以来,连日大雾成灾,使成都成为了一座“雾都”,成都市气象台21日、22日连续两天发布大雾红色预警,提醒市民注意防范大雾带来的各种不利影响。连天的大雾使成都市交通受到严重影响。22日,成都双流国际机场在浓雾下的能见度一度仅有15米左右,机场被迫关闭8小时,125个进出航班延误,其中,16个航班被迫取消,上万旅客滞留机场。同日,成都绕城高速及成渝、成绵等高速公路,也因浓雾而…  相似文献   

3.
利用逐5 min地面观测资料、探空资料、风云四号卫星云图以及NCEP 1°×1°再分析资料,分析2020年2月1—2日出现在榆林市的一次浓雾天气成因及维持机制。结果表明:此次浓雾属于辐射雾,发生在500 hPa为较平直纬向气流,700 hPa和850 hPa盛行弱偏北风,地面处于均压场中的大尺度环流背景下。大雾出现前雾区有降雪,降雪后空气湿度达到饱和,地面维持3 m/s以下弱偏北风,夜间辐射降温,气温下降至露点温度,饱和水汽凝结成小水珠,大雾得以形成和发展;雾区上空850 hPa上逆温层稳定存在,影响动量的垂直交换,使得水汽在近地层长时间集聚,是浓雾得以维持12 h的主要原因;日出后地面气温回升,近地面动量下传和冷空气入侵,垂直扩散增强,浓雾得以快速消散。分析浓雾期间动力和水汽条件发现,大雾出现前,水汽在雾区上空辐合,为大雾的形成提供了水汽基础;大雾维持阶段,雾区上空层结稳定,近地面有逆温层存在;大雾消散阶段,逆温层被破坏,低层转为辐散气流,浓雾快速消散。  相似文献   

4.
利用榆林市12个国家气象观测站2016—2020年逐小时地面观测资料,统计分析了榆林地区雾的变化特征及地面气象条件。结果表明:(1)榆林地区各等级雾中强浓雾出现时数最多,特强浓雾鲜少出现;各等级雾都呈现显著的季节变化和日变化特征,多出现于秋季,10月最多,日变化呈单峰型,07:00前后达到峰值。(2)雾整体呈现“东多西少”的空间分布,大雾和浓雾主要出现在东南部的吴堡、绥德、清涧等地,西部的定边、靖边出现最少,强浓雾和特强浓雾主要出现在东南部的绥德、米脂等地,北部的府谷次之。(3)大雾和浓雾天气过程持续时间短,大多为1 h,强浓雾一旦生成,很难在短时间内消散;雾主要在夜间到凌晨生成,在日出后消散,强浓雾的生成和消散时段均比大雾和浓雾偏早且集中。(4)雾强度越强,对应地面相对湿度越高,温度露点差越低,气温和露点温度的降幅越大,风速越小;雾在地面各风向均可出现,但较盛行东南风和西北风。(5)强浓雾由于发生时数多、持续时间长,是榆林市影响最严重的大雾天气,95%强浓雾出现条件为相对湿度大于95%和温度露点差小于1℃,风速基本小于2 m/s,这对强浓雾的预报具有很好的指示意义。  相似文献   

5.
冀中滨海平原大雾的形成特征及变化   总被引:1,自引:0,他引:1  
利用冀中滨海平原区廊坊市1971-2000年9个观测站大雾资料,对该区域大雾、浓雾的形成特征及变化进行了分析,得出结果:(1)大雾尤其浓雾是冀中滨海平原区秋、冬季发生频率最高的灾害性天气之一;(2)大雾、浓雾除具有低能见度外,其连续性、持续性和大范围同日出现等也是不容忽视的具有灾害性影响的特征;(3)自1990年以来,年平均大雾日的变化有明显加剧的现象,相比20世纪80年代,90年代浓雾日数有明显增加的趋势;(4)影响大雾日数变化的主要原因是天气、气候条件的变化,浓雾日数的增加还与城市经济化发展、空气污染程度加剧等因素有关.  相似文献   

6.
福建近44年雾日趋势变化特征及可能影响因素   总被引:13,自引:1,他引:13       下载免费PDF全文
吴滨  施能  李玲 《应用气象学报》2007,18(4):497-505
应用1961—2004年福建省50个气象站逐月大雾及浓雾日数资料, 分析了全省大雾日数及浓雾日数的年、季分布特点、长期变化趋势、年代际变化特征以及可能的影响因素。结果表明:全省年、季雾日数分布均表现为中部及三明西部的多雾区, 沿海及南部地区的少雾区, 而多雾区中浓雾所占的比率达30%以上; 全省年、季大雾日数大部分地区表现为明显的减少趋势, 仅在龙岩西部呈增加趋势, 而浓雾的减少趋势不如大雾; 年、季雾日数具有明显的年代际变化特征, 年、季雾日数在20世纪80年代中期左右转为明显偏少期, 之前则为明显的偏多期。文中还重点分析了6个代表站大雾与浓雾的趋势与月际分布特征。进一步研究指出, 年雾日数与年平均气温有较好的负相关关系, 而与年平均相对湿度有很好的正相关关系, 同时与森林覆盖率的变化有一定关系。  相似文献   

7.
一次持续性大雾边界层结构特征及诊断分析   总被引:2,自引:0,他引:2  
2010年11月30日至12月2日,冀中南部及天津地区出现了一次大范围的大雾天气,持续时间长达3 d,其中石家庄浓雾持续时间长达34 h,强浓雾持续时间7 h。利用加密自动站、天津市250 m气象铁塔梯度观测资料,结合常规气象资料和NCEP/NCAR再分析资料,对连续性大雾边界层结构特征以及大雾的形成、发展维持和消散进行了诊断分析。研究得到:大雾形成前期地面持续东风,有利水汽的聚积;当地面风向转为偏北风时促进水汽凝结,致使大雾形成,大雾形成后再次转为长时间偏东风有利大雾的维持和加强;850 hPa以下西南暖湿气流和近地面层逆温的长时间维持,是平流大雾持续的主要原因;低层3支水汽的输送及850 hPa的西南急流重建直接导致了强浓雾形成。大雾维持加强期间,边界层风速为1~2 m·s~(-1),尤其是强浓雾期间,风速仅为1 m·s~(-1);当边界层4 m·s~(-1)以上西北风速从250 m逐渐下传至地面时,逆温层破坏,大雾天气结束。  相似文献   

8.
张浩  石春娥  杨军  倪婷 《大气科学》2021,45(6):1217-1231
雾对交通运输有不利影响,尤其是强浓雾。本文利用2019年1月上中旬在寿县国家气候观象台应用FM-100型雾滴谱仪测量的雾滴谱数据和常规气象观测数据,分析了不同强度雾的微物理特征,以及能见度与含水量、雾滴数浓度、相对湿度之间的关系,在此基础上建立了能见度参数化方案。结果表明:(1)随着雾的强度增强,雾中含水量显著增大,大雾、浓雾和强浓雾阶段含水量平均值分别为0.003 g m?3、0.01 g m?3和0.09 g m?3;当含水量大于0.02 g m?3,出现强浓雾的比例高达95%。(2)雾滴数浓度、雾滴尺度随着雾强度增强而增大,从大雾到浓雾,雾滴数浓度显著增加(增幅67%),而从浓雾到强浓雾,雾滴尺度显著增大,平均直径、平均有效半径分别增加62%、135%;当雾滴有效半径大于4.7 μm,出现强浓雾的比例高达95%。(3)强浓雾、浓雾、大雾雾滴数浓度谱分布均为双峰结构,谱分布整体偏向小粒子一端,强浓雾谱型为Deirmendjian分布,浓雾、大雾均为Junge分布;强浓雾的雾水质量浓度谱呈现多峰特征,最大峰值出现在21.5 μm处,浓雾雾水质量浓度谱为双峰分布,大雾为单峰型,最大峰值均出现在5 μm处。(4)含水量、数浓度与能见度均呈反相关关系,含水量对能见度的影响最为显著;分别采用全样本和分段方式建立了四种能见度参数化方案,评估检验结果表明,基于含水量的能见度分段拟合方案对能见度的估算效果最好。  相似文献   

9.
利用常规高空地面、机场跑道自动观测系统(AWOS)、微波辐射计及FY4A新一代静止气象卫星等资料对2019年12月9~13日发生于北疆沿天山一带的一次持续性浓雾天气进行观测特征及演变分析,结果表明:(1)此次大雾天气过程是发生在500 hPa高空脊区控制,低层不断有暖平流东伸,地面位于蒙古冷高压后部均压场的大尺度环流背景下。(2)大雾发生前,地面明显升温有利于地表融雪、水汽蒸发,这为浓雾的形成和维持提供有利的水汽条件。浓雾维持期间,地面风速维持1 m.s-1左右的弱风场,温度露点差≤2℃,空气接近饱和,准噶尔盆地低洼地形均为浓雾维持提供有力环境条件。浓雾消散期间,风速增大,急剧降温,快速增湿,有利于雾滴凝结为米雪,使得浓雾消散。(3)Brunt-Vaisala(布伦特-维萨拉)指数能较好的反映浓雾期间边界层稳定度,并能提炼出相关稳定度阈值。浓雾期间相对湿度≥85%高度层主要集中在100米以下的贴地层,持续深厚的湿度层为浓雾形成和持续提供较好水汽条件,大雾期间强逆温层顶主要维持在600 m高度,当逆温层顶高度抬升时,有利于雾滴粒子、水汽粒子向上扩散,能见度好转。(4)FY4A卫星的多通道可见光及红外通道差图像能较好的监视白天及夜间大雾的形成、维持及生消变化,对于业务中短时临近预报有较好的帮助。  相似文献   

10.
利用四川省153个气象观测站点的逐时能见度和相对湿度资料,根据水平能见度将雾分为大雾、浓雾、强浓雾和特强浓雾四个等级,分析了四川不同等级雾的时空分布、持续时间及生消时间,结果表明:四川地区,雾在冬季最多,夏季最少,特强浓雾在4~9月比较罕见;各等级雾均在后半夜到早上(03~09时)最为频发,午后到晚上最少,强浓雾和特强浓雾几乎不会在午后到晚上(13~20时)发生;四川盆地是雾的多发区,川西高原和攀西地区雾较少,四川大部地区没有强浓雾和特强浓雾发生;四川大雾和浓雾持续时间短,一般为1~3h;强浓雾和特强浓雾一旦形成,便不容易在短时间内消散;成雾时间主要在夜间到日出前,消雾时间主要在日出后。   相似文献   

11.
<正>1大雾过程2013年10—12月,江西省区域性大雾的日数(全省单日15站以上大雾)达12 d,与常年相比持平。以11月15—17日的大雾范围最广、强度最大,尤其是16日早晨的大雾生成时间早、能见度低,浮梁县、石城县出现了能见度为40 m和50 m强浓雾。  相似文献   

12.
WRF模式对沪宁高速公路浓雾的模拟与检验研究   总被引:2,自引:0,他引:2  
统计表明,发生在沪宁高速公路的大雾以辐射雾最多,而以平流雾形成浓雾的可能性最大。利用WRF模式3.0版本优选微物理过程和陆面过程方案,对2006年6月—2009年5月发生在沪宁高速公路能见度低于500 m的大雾,按照成因分为辐射雾和平流雾进行数值模拟,并利用实测资料进行检验,验证WRF模式对大雾的模拟预报能力。结果表明,模式对平流浓雾天气的模拟效果较好,模拟预报准确率较高,但未能模拟出辐射浓雾天气。   相似文献   

13.
正1大雾过程2017年10—12月,江西省区域性大雾(全省单日15站以上大雾)日数为8 d,与常年相比偏少,其中单日出现30站以上大雾为3 d。12月29—31日全省连续3 d出现大雾天气,范围广,强度强,先后有27站出现能见度不足200 m的大雾,其中莲花、鹰潭、婺源出现能见度为40 m左右的强浓雾。12月江西有17 d出现较大范围霾天气(单日出现40站  相似文献   

14.
利用那曲市色尼区常规气象观测资料,结合NCEP(1°×1°)、Era5(0.25°×0.25°)再分析资料,从天气学角度对2019年4月10日藏北一次浓雾天气的形成机制、物理结构特征以及局地性爆发的成因进行诊断分析。结果表明:此次浓雾具有局地爆发性特征;前期积雪融化的水汽蒸发配合风场辐合作用,为此次大雾的形成提供了水汽条件;500 hPa环流背景及边界层内上层暖平流与下层冷平流配置,为大雾的形成提供了弱风与稳定层结条件,从而雾得以发展且维持;夜间少云,地表净辐射加强,降温冷却作用导致水汽达到饱和状态,利于水汽凝结形成无数悬浮于空气里的小雾滴;近地层风速小、逆温及下沉运动使水汽不易向高空扩散,在相对有限的空间内水汽大量汇聚,导致大雾爆发性发展;大雾的局地性与特殊地形关系密切。  相似文献   

15.
《气象与减灾研究》2010,33(2):I0001-I0001
<正>重要天气过程概述1大雾过程2010年1—3月,江西出现区域性大雾的日数(全省单日15站以上大雾)达12d。其中1月出现大雾8d,较历年同期偏多。1月3—4日和18日的大雾过程范围广、强度强,尤其是1月4日,全省先后有63个县(市)出现大雾天气,其中,30个县(市)为能见度200m以下的浓雾,南昌市区、南昌县、进贤县、高安市出现了能见  相似文献   

16.
选用气象自动观测站5 min加密观测资料、探空秒级资料、风廓线雷达资料及欧洲中心ERA5逐小时再分析资料,对2019年1月10—12日陕西关中平原一次持续性浓雾天气的环流形势、生消演变特征及其爆发性增强成因进行分析。结果表明:此次浓雾过程具有强度大、持续时间长、多地爆发性增强的特征。雨后的高湿环境,为此次浓雾过程提供了有利的水汽条件;稳定维持的强逆温层,使大量水汽积聚在近地表不易扩散,为此次浓雾的爆发增强和持续提供了有利的层结条件;关中平原特殊地形作用形成的风场辐合,使水汽充分凝结,有利于强浓雾的发展。触发因子是此次浓雾多地短时爆发性增强的可能原因,如风向的突然转变和近地面冷空气回流等。浓雾爆发增长前静稳指数的提前跃增,静稳天气背景条件下925 hPa高度以下近地面东风回流,可作为该地区大雾爆发增强的参考指标。  相似文献   

17.
1 大雾过程2018年10—12月,江西省区域性大雾(全省单日15站以上大雾)日数为21d,与常年相比偏多6.4d,其中单日出现30站以上大雾为9d。11月23—30日全省连续8d出现大雾天气,范围较广,能见度低,其中27日全省有52站出现大雾。12月20—22日全省连续3d出现大雾天气。12月17日全省72站出现大雾,为2013年以来范围最广、强度最强的大雾过程,其中32站出现强浓雾(能见度低于200m),11站能见度低于100m。  相似文献   

18.
一次罕见冬季强浓雾天气成因分析   总被引:6,自引:1,他引:5  
利用加密观测资料和NCEP/NCAR 1°×1°的6 h再分析资料,对2006年12月25~27日发生在我国中东部地区的一次罕见强浓雾天气过程从大尺度背景、动力和热力机制等方面进行了诊断分析。结果表明:①本次过程大雾发生阶段近地面风速很小,在0.3~2.9 m/s之间变化;浓雾发生阶段风速在0.3~2.4 m/s之间变化;15 m能见度维持阶段风速在0.8~1.1 m/s之间变化;②虽然浓雾发生前的很长一段时间内水汽条件差,而且后期西风槽影响时也无降水,但是槽前西南气流的持续水汽输送使得强浓雾形成所必须的水汽条件得到满足;③在大雾发生前,稳定层结逐渐建立并在大雾期间稳定维持,稳定层结的建立和维持对浓雾的形成、持续有重要作用;日出后首先在较高层出现不稳定层结,继而下传到底层,稳定层结被破坏,大雾减轻或消散;④第1阶段(25日夜里至26日上午)强浓雾出现前,能见度出现多次急速大幅振荡,在第2阶段(26日傍晚至27日上午)则未出现类似现象。  相似文献   

19.
正(2019年10—12月)重要天气过程概述江西省气象台陈娟1大雾过程2019年10—12月,江西区域性大雾(全省单日15站以上大雾)日数为3 d,较常年同期明显偏少,偏少11.6 d,其中单日出现30站以上大雾为1 d。10月29—30日全省连续2 d出现大雾天气,范围较广,能见度低,其中29日全省有47站出现大雾,能见度小于200 m浓雾有20站。  相似文献   

20.
选用2005-2009年沈阳地区5个气象站点的气象资料,总结了沈阳地区雾天的时空分布规律.沈阳地区一年中近一半的时间出现轻雾,大雾年平均16.4天;轻雾和大雾的季节分布都呈夏、秋季多,春季少的态势;大雾多发时段在清晨.在数值预报的基础上,利用UPS预报方法,进一步做出大雾天气订正预报,建立沈阳地区大雾天气UPS订正预报方法.当数值预报有大雾时,如T-Txover(最高气温出现时段温度露点差)≤5℃则可预报有大雾,当-4℃<T-Txover≤5℃时可预报未来会出现能见度小于等于500 m的浓雾;如T-Txover≤-4℃则预报未来会出现能见度小于等于200m的强浓雾.如T-Txover>5℃则有暖湿平流时预报有大雾,无暖湿平流时预报不会出现大雾.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号