首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
利用拉曼光谱和红外光谱研究了方解石、白云石和菱镁矿的光谱学特征,探究了影响三种矿物红外辐射性能的因素。三种矿物的拉曼光谱(Raman)、中红外吸收光谱(MIR)、远红外吸收光谱(FIR)显示随着矿物中镁含量的增大将会影响CO32-的面外弯曲振动(ν2)、反对称伸缩振动(ν3)和平面内弯曲振动(ν4),使各光谱特征峰均向高频端迁移。基于黑体辐射定律以及在80 ℃、400~2 000 cm-1矿物的辐射能量谱,结果显示方解石、白云石、菱镁矿的发射率依次减少(0.951,0.938,0.895)。三种矿物的红外吸收光谱和发射光谱中的振动位置均受CO32-基频的显著影响,在1 300~1 650 cm-1均产生宽的低吸收带,该吸收带与CO32-的反对称伸缩振动相关,且吸收带范围(202,236,272 cm-1)与发射率之间呈负相关关系。因此,当最强化学键的振动出现在发射光谱窄的吸收带范围内会产生相对较高的辐射能和发射率。此外,矿物的晶体结构也会影响发射率,大的离子半径、键长和晶胞体积将降低辐射过程中能量的吸收,增强辐射特性。综上研究结果,方解石、白云石和菱镁矿的拉曼光谱和红外光谱揭示了金属原子的相对质量对光谱学特征的显著影响,其发射率可能受到C—O键的反伸缩振动范围、最强吸收带控制的最低发射率以及矿物晶体结构的共同影响。这项研究呈现了必要的光谱信息和热发射率数据以识别特定的碳酸盐矿物,为类似矿物的光谱特征研究奠定了基础;同时为进一步认识地壳中大量的碳酸盐矿物提供了研究方法,也为地外勘探的深入研究给予相关的理论基础。  相似文献   

2.
Reservoir fluid compositions have been assessed from analytical data on water samples collected from thermal and cold waters in Balçova geothermal field. The results of mineral equilibrium modelling indicate that the waters, with some exceptions, are systematically supersaturated with respect to calcite, aragonite, dolomite, chalcedony and quartz, but undersaturated with respect to amorphous silica, celestite, anhydrite and gypsum and undersaturated or supersaturated with respect to barite, low-albite, K-feldspar, gibbsite and Fe(OH)3(a). Calculation of mineral saturation states and geochemical analyses of scale and field observations show that carbonate minerals (calcite, aragonite and dolomite) are most likely to be precipitated as a scale type. Besides carbonates, scale formation risk of amorphous silica, Fe(OH)3(a), anhydrite, barite and celestite minerals should be taken into account in some wells and surface equipment. Most of the waters, with some exceptions, have carbonate scaling risk at all temperatures, whereas the other scaling risks only exist over a limited temperature range. While silica, Fe(OH)3(a) and barite show a scaling tendency at low temperatures, anhydrite and celestite scaling occurs at higher temperatures.  相似文献   

3.
Thermal waters of the Usak area have temperatures ranging from 33 to 63°C and different chemical compositions. These waters hosted by the Menderes Metamorphic rocks emerge along fault lineaments from two geothermal reservoirs in the area. The first reservoir consists of gneiss, schists, and marbles of the Menderes Metamorphic rocks. The recorded reservoir is Pliocene lacustrine limestone. Hydrogeochemical studies indicate that thermal waters were mixed with surface waters before and/or after heating at depth. The results of mineral equilibrium modeling indicate that all the thermal waters are undersaturated at discharge temperatures for gypsum, anhydrite, and magnesite minerals. Calcite, dolomite, aragonite, quartz, and chalcedony minerals are oversaturated in all of the thermal waters. Water from the reservoir temperatures of the Usak area can reach upto120°C. According to δ18O and δ2H values, all thermal and cold groundwater are of meteoric origin.  相似文献   

4.
This study reports a complex fluid and thermal history using petrography, electron microprobe, isotopic analysis and fluid inclusions in replacement minerals within gypsum pseudomorphs in Tithonian-Berriasian lacustrine deposits in Northern Spain. Limestones and dolostones, formed in the alkaline lakes, contain lenticularly shaped gypsum pseudomorphs, considered to form in an evaporative lake. The gypsum was replaced by quartz and non-ferroan calcite (Ca-2), which partially replaces the quartz. Quartz contains solid inclusions of a preexisting non-ferroan calcite (Ca-1), anhydrite and celestine. High homogenization temperatures (T h ) values and inconsistent thermometric behaviour within secondary fluid inclusion assemblages in quartz (147?C351°C) and calcite (108?C352°C) indicate high temperatures after precipitation and entrapment of lower temperature FIAs. Th are in the same range as other reequilibrated fluid inclusions from quartz veins in the same area that are related to Cretaceous hydrothermalism. Gypsum was replaced by anhydrite, likely during early burial. Later, anhydrite was partially replaced by Ca-1 associated with intermediate burial temperatures. Afterward, both anhydrite and Ca-1 were partially replaced by quartz and this by Ca-2. All were affected during higher temperature hydrothermalism and a CO2-H2O fluid. Progressive heating and hydrothermal pulses, involving a CO2-H2O fluid, produce the reequilibration of the FIAs, which was followed by uplift and cooling.  相似文献   

5.
The composition of waters from 10 thermal springs located in western Virginia near the 38th parallel lineament have been analysed for major dissolved components and for Sr, Fe, Cu, Zn and Cd; from these analyses, free ion activities have been calculated. The temperatures of the springs range from 17° to 39°C, the heat apparently being derived simply from deep circulation along synclinal, Middle Ordovician limestones. More than 95 per cent of the dissolved solids consist of Ca2+, Mg2+ HCO3?, and SO42?. The concentrations of these components, as well as the spring temperatures, have not changed appreciably in 140 yr in some springs. The waters that have temperatures below 25° are all undersaturated with respect to calcite and dolomite, possibly because they have been contaminated by shallow ground waters. The waters with temperatures above 25° are in equilibrium with calcite and dolomite. Furthermore, in this latter group, the calcium-sulfate activity product and the sulfate-carbonate activity ratio are nearly constant, even though the waters are under saturated with respect to gypsum, anhydrite, celestite and strontianite. This can be explained if CaSO4 is coprecipitated in a mineral such as aragonite. The waters have absorbed some dissolved oxygen near the surface, but at depth they may be anoxic with Eh controlled by the oxidation of pyrite to goethite. The extremely low chloride concentrations of these waters clearly distinguish them from the brines which deposited Mississippi Valley and Appalachian type epithermal ore deposits.  相似文献   

6.
用场发射扫描电子显微镜及能谱仪和X射线衍射仪,对淄博市中心城区大气降尘的矿物组成、微形貌和微区成分进行了分析.结果表明,淄博市大气降尘的矿物组成有石英、长石、石膏、方解石、赤铁矿、白云母、伊利石和非晶质等.矿物微形貌特点和矿物组成揭示了降尘组分主要来源于3种途径:与高温过程有关的工业活动排放的产物,自然成因和大气化学反应的产物.球形赤铁矿、板状方解石和絮状石膏是本研究中观察到的3种典型矿物微形貌.  相似文献   

7.
The Dead Sea brine is supersaturated with respect to gypsum (Ω = 1.42). Laboratory experiments and evaluation of historical data show that gypsum nucleation and crystal growth kinetics from Dead Sea brine are both slower in comparison with solutions at a similar degree of supersaturation. The slow kinetics of gypsum precipitation in the Dead Sea brine is mainly attributed to the low solubility of gypsum which is due to the high Ca2+/SO42− molar ratio (115), high salinity (∼280 g/kg) and to Na+ inhibition.Experiments with various clay minerals (montmorillonite, kaolinite) indicate that these minerals do not serve as crystallization seeds. In contrast, calcite and aragonite which contain traces of gypsum impurities do prompt precipitation of gypsum but at a considerable slower rate than with pure gypsum. This implies that transportation inflow of clay minerals, calcite and local crystallization of minerals in the Dead Sea does not prompt significant heterogeneous precipitation of gypsum. Based on historical analyses of the Dead Sea, it is shown that over the last decades, as inflows to the lake decreased and its salinity increased, gypsum continuously precipitated from the brine. The increasing salinity and Ca2+/SO42− ratio, which results from the precipitation of gypsum, lead to even slower kinetics of nucleation and crystal growth, which resulted in an increasing degree of supersaturation with respect to gypsum. Therefore, we predict that as the salinity of the Dead Sea brine continues to increase (accompanied by Dead Sea water level decline), although gypsum will continuously precipitate, the degree of supersaturation will increase furthermore due to progressively slower kinetics.  相似文献   

8.
Carbon isotope fractionations between calcite and graphite in the Panamint Mountains, California, USA, demonstrate the importance of mass balance on carbon isotope values in metamorphosed carbon-bearing minerals while recording the thermal conditions during peak regional metamorphism. Interbedded graphitic marbles and graphitic calcareous schists in the Kingston Peak Formation define distinct populations on a δ13C(gr)–δ13C(cc) diagram. The δ13C values of both graphite and calcite in the marbles are higher than the values of the respective minerals in the schists. δ13C values in both rock types were controlled by the relative proportions of the carbon-bearing minerals: calcite, the dominant carbon reservoir in the marble, largely controlled the δ13C values in this lithology, whereas the δ13C values in the schists were largely controlled by the dominant graphite. This is in contrast to graphite-poor calcsilicate systems where carbon isotope shifts in carbonate minerals are controlled by decarbonation reactions. The marbles record a peak temperature of 531±30 °C of a Jurassic low-pressure regional metamorphic event above the tremolite isograd. In the schists there is a much wider range of recorded temperatures. However, there is a mode of temperatures at c. 435 °C, which approximately corresponds to the temperatures of the principal decarbonation metamorphic reactions in the schists, suggesting that the carbon exchange was set by loss of calcite and armouring of graphite by newly formed silicate minerals. The armouring may explain the relatively large spread of apparent temperatures. Although the modal temperature also corresponds to the approximate temperature of the Cretaceous retrograde event, retrograde exchange is thought less likely due to very slow exchange rates involving well-crystallized graphite, armouring of graphite by silicates during the earlier event, and because of other barriers to retrograde carbon exchange. Thus, only the calcite–graphite carbon isotope fractionations recorded by the marbles demonstrate the high-temperature conditions of the low-pressure Jurassic metamorphic event that was associated with the emplacement of granitic plutons to the west of the Panamint Mountains.  相似文献   

9.
糜棱岩化过程中矿物变形温度计   总被引:17,自引:0,他引:17  
对有效确定中—低温下糜棱岩变形温度一直以来都没有比较理想的方法,而在研究韧性剪切带过程中对其变形温度的确定又常是必不可少的。根据近年来国际上对天然石英、长石、方解石等矿物变形的研究成果,总结了利用矿物变形指示变形温度的方法。在不同的温度条件下,长石与石英的变形方式具有阶段性,其变形与动态重结晶型式与温度具有明显的对应关系。石英变形中的滑移系及其C 轴组构图主要受变形温度的控制。低温变形中的方解石e 双晶纹形态也与温度呈密切的相关性。观测这些矿物变形的显微构造,可以很好地估计韧性剪切带糜棱岩化过程中的变形温度。  相似文献   

10.
《Applied Geochemistry》2006,21(2):253-268
The Dalaman and Köyceğiz thermal springs are from karstic limestones belonging to Upper Cretaceous to Burdigalian Beydağları autochthon and Carboniferous to Lutetian Lycian nappes. They have measured temperatures of 24– 41 °C, specific electrical conductivities of 14,310–45,600 μS/cm, and are dominated by Na (1550–8500 mg/kg) and Cl (2725–15,320 mg/kg). The heat source of the geothermal systems of the area is tectonic related and the occurrence of the thermal springs is related to the young normal faults. Meteoric waters and seawaters recharge the reservoir rocks, are heated at depth with increasing geothermal gradient, and move up to the surface through the fractures and faults by convection trend and emerge as thermal springs. While thermal waters move up to the surface, they mix with different proportions of seawater and cold fresh waters. The seawater contribution to the thermal waters varies from 24% to 78%. Lake waters in the area are connected with thermal waters. Consequently, their chemical composition is influenced by the chemistry of thermal waters. Chemical equilibrium modelling based on measured outlet temperatures and measured pH shows that all the waters are oversaturated with respect to quartz and K-mica and undersaturated with respect to Al(OH)3, anorthite, gypsum, siderite and SiO2(a). Albite, alunite, aragonite, Ca-montmorillonite, calcite, chalcedony, chlorite, dolomite, Fe(OH)3(a), fluorite, gypsum, illite, K-feldspar, kaolinite and sepiolite minerals are mostly oversaturated or undersaturated. Mineral saturation studies of the thermal springs indicate that dolomite, chalcedony and quartz are most likely to cause scaling at outlet conditions. Assessments from various chemical geothermometers, and Na–K–Mg ternary and mineral equilibrium diagrams suggest that the reservoir temperature is around 65–90 °C. The temperatures obtained from quartz, quartz-steam loss, Mg/Li geothermometers and mineral equilibrium diagrams give the most reasonable results.  相似文献   

11.
Oxygen isotope fractionation in the zinc oxides has been calculated by means of the modified increment method. The results suggest that zincite is slightly enriched in 18O relative to the franklinite of the spinel-type structure but considerably depleted in 18O relative to the franklinite of the inverse spinel-type structure. The zinc oxides are significantly depleted in 18O relative to water under hydrothermal and metamorphic conditions. The oxygen isotope analyses of mineral pairs including the zinc oxides and the common gangue minerals such as calcite and quartz can constitute a sensitive isotope geothermometer. Application of oxygen isotope geothermometry to natural assemblages is attempted for the calcite-zinc ore mineral pairs from the Sterling Hill deposit in USA. The results indicate that the temperature of the zinc mineralization may be in the range from 410° to 630 °C and thus lower than the metamorphic temperatures of granulite facies. A metamorphic fluid could have been involved in the formation of the zinc ore minerals. Franklinite would structurally be an inverse spinel in the infancy of its formation, and thus could have originally evolved from Zn2 + substitution to Fe2 + of magnetite at the high temperatures.  相似文献   

12.
The Sfax Basin in eastern Tunisia is bounded to the east by the Mediterranean Sea. Thermal waters of the Sfax area have measured temperatures of 23–36°C, and electrical conductivities of 3,200 and 14,980 μS/cm. Most of the thermal waters are characterized as Na–Cl type although there are a few Na–SO4–Cl waters. They issue from Miocene units which are made up sands and sandstones interbedded with clay. The Quaternary sediments cap the system. The heat source is high geothermal gradient which are determined downhole temperature measurements caused by graben tectonics of the area. The results of mineral equilibrium modeling indicate that the thermal waters of the Sfax Basin are undersaturated with respect to gypsum, anhydrite and fluorite, oversaturated with respect to kaolinite, dolomite, calcite, microcline, quartz, chalcedony, and muscovite. Assessments from various chemical geothermometers, Na–K–Mg ternary and mineral equilibrium diagrams suggest that the reservoir temperature of the Sfax area can reach up to 120°C. According to δ18O and δ2H values, all thermal and cold groundwater is of meteoric origin.  相似文献   

13.
Most vein minerals deposited in fractures of the Jialingjiang Formation from Libixia section,Hechan area include a large amount of saddle dolomite and accompanying celestite,calcite and fluorite.This study analyzed the nature,source,evolution of the fluids by plane-light petrography,fluid-inclusion methods,cathodoluminescence images,and stable isotopic compositions.The homogenization temperatures of two-phase aqueous fluid inclusions in dolomite range between100 and 270℃.Combined with theδ~(18)O data,it is suggested that the fluid responsible for the precipitation of fracture fillings haveδ~(18)O values between 10‰and 18‰(relative to SMOW).The saddle dolomite and the accompanying minerals were the result of activity of dense brines at elevated temperatures.Moreover,analysis shows that the fluid was derived from a mixture of marine-derived brine and deeper circulating flow.This fluid was enriched in Sr during diagenesis and formed celestite in fracture and for regional mineralization.Dissolution of saddle dolomite was attributed to the cooling of Mg/Ca-decreased fluids,which may relate to a leaching of gypsum to celestite in surrounding carbonates.  相似文献   

14.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

15.
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H2O-CO2-NaCl-CaCO3-CaSO4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca2+, , , and CaSO4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results.Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.  相似文献   

16.
利用X射线衍射仪对28种国产香烟烟灰及其中的两种香烟(绿南京和云烟)的卷烟纸灰烬、烟丝以及过滤嘴中的矿物成分进行了研究.初步研究结果表明,香烟烟丝中含有一水草酸钙石,过滤嘴中不含任何矿物,烟灰中的矿物主要是方解石,此外还含有少量石英、钾盐、钾矾、石膏等矿物.这些矿物具有不同的来源:方解石来自卷烟纸,一水草酸钙石是烟叶生长期间自身合成的矿物,石膏是香烟燃烧过程中新形成的矿物.这些研究结果有可能为全面认识香烟致病机理提供一定的科学依据.  相似文献   

17.
This study deals with the effect of mechanical treatment, using vibrating mill, on the mineralogy and structure of apatite and associated gangue minerals (dolomite, calcite, quartz, pyrite and gypsum) in Abu-Tartour phosphate ore, Egypt. The evolution of mineralogy, crystallinity and deformation mechanism were evaluated with different techniques (XRD, DTA, TGA and FT-IR). Data obtained using these techniques give a good picture about the mechanochemical behavior of the different components in the ore. X-ray diffraction (XRD) indicated that the mineralogy has been changed quantitatively at short time grinding (30 min). After 45 min of grinding, the sample contained mainly carbonate apatite, quartz and pyrite. On the other hand, dolomite mineral disappeared, while calcite was partially transformed into aragonite. This transformation increased with increasing grinding time. Both Fourier Transform Infrared (FT-IR) and differential thermal analysis (DTA) analyses revealed that remarkable changes in the structural groups have occurred after 45 min of grinding. After 75 min of grinding, the carbonate in the apatite mineral partially decomposed and tricalcium phosphate formed instead. The formation of that simple form (tricalcium phosphate) may be another reason, besides surface area, for increasing the reactivity of phosphate ore by grinding. Scanning electron micrographs (SEM) revealed some idea about the grinding mechanisms of Abu-Tartour phosphate using vibrating mill. They indicate that the different minerals are ground differently. The apatite minerals are ground mostly by abrasion mechanism, while the carbonate minerals are ground mostly by compression. Also, these minerals are ground with different rates, where dolomite is ground faster than calcite, which are referred to the crystal lattice.  相似文献   

18.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

19.
兰州市取暖期可吸入颗粒物中单颗粒矿物组成特征   总被引:1,自引:1,他引:1  
为研究兰州市2005年冬季大气可吸入颗粒物(PM10)中单颗粒的矿物组成,用能谱扫描电镜识别和统计了兰州市区(东方红广场)和郊区(榆中县)两个采样点的单矿物颗粒。结果在市区样品中识别出方解石、伊/蒙混层、石英、斜长石、伊利石、石膏、绿泥石、高岭石、浊沸石和钾长石等21种矿物,前7种占统计总量的75%以上;郊区样品中识别出20种矿物,以方解石、石英、伊利石、绿泥石、斜长石和伊/蒙混层为主(占70%以上),与市区相比缺少钾石膏、金红石和水铝酸钙而增加了硫酸镁和磷灰石。总体来看,大气PM10中的矿物颗粒可分为粘土类、长石类、碳酸盐类、硫酸盐类、氧化物类和其他六类,以粘土类和碳酸盐类矿物为主(约占60%);冬季市区颗粒物表面的“硫化”现象较郊区严重;这些矿物颗粒主要来自地表土,人为排放和大气中二次化学反应生成的矿物的贡献较小。  相似文献   

20.
Two sites on the east coast of Sweden (Forsmark and Laxemar/Simpevarp) are currently being investigated as potential geologic hosts for a deep repository isolating high-level nuclear waste. In this paper, a methodology for fracture mineral studies is suggested with focus on the variation in depth of the fresh/saline water interface and location of the redox front in the bedrock. The most commonly precipitated fracture minerals in crystalline rocks are chlorite, calcite, quartz, K-feldspar, Ca–Al-silicates like epidote, prehnite and laumontite, sulphides and Fe-oxides. Of these, calcite is the mineral best suited for palaeohydrological studies since it precipitates during a wide range of conditions including low-temperature conditions during the Pleistocene and Holocene epochs. Sulphides and Fe-oxides/hydroxides provide information on the position of the redox front. In order to carry out palaeohydrological studies, a number of prerequisites are required such as; high quality drill core material, geological knowledge of the sequence of fracture mineralizations; the post-glacial (Holocene) evolution in the area; high quality groundwater chemistry, including stable isotopes; and a conceptual model of the hydrogeochemistry that is to be tested. The choice of methods used here is based on the fact that both the Forsmark and Laxemar/Simpevarp sites are situated in Palaeoproterozoic crystalline rocks with reactivation of fractures over at least 1.5 Ga, and they have been exposed to glaciations/deglaciations and transgressions/regressions of the Baltic Sea during the Quaternary. This has resulted in a palaeohydrology with a range of groundwaters of quite different chemistry and stable isotopic composition. The suggested scheme for solving the variation in depth of the fresh/saline water interface focuses on fracture calcite. It includes a step-by-step procedure with;
(1)
Initial δ18O and δ13C, analyses and complementary petrographic studies of thin sections and crystal morphology followed by  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号