首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
薛丁 《地震》2008,28(2):74-78
地震构造是强震发生的必要基础,强震的孕育和发生与构造密切相关。强震的孕育和发生不仅与震中周围构造有关,而且与孕震区所在的整个构造带有关。这就表明整个构造带的地震活动性与未来强震都有关联。因此,在做测震学参数异常预测地震时,必须考虑整个构造带的地震活动。过去人们常以震中周围地区的地震活动资料来做测震学参数的异常分析,可能会丢失部分信息。文中以金沙江—红河边界带和地震学参量Mf值的结合为例,对基于活动地块边界带的测震学参数强震预测进行了探索,其结果对丽江地震预测效果很好,这对边界带的地震危险性判定有某种参考价值。  相似文献   

2.
强震的孕育和发生不仅与震中附近构造有关,而且与孕震区所在的整个构造带有关,因此在利用测震学参数异常预测地震时必须考虑整个构造带的地震活动.过去以震中周围地区的地震活动资料来做测震学参数的异常分析,可能会丢失部分信息.本文进行了地震构造分区和构造单元的划分,以D、C、Mf值和河套断陷边界带的结合为例,对基于活动地块边界带的测震学参数预测地震进行了探索,结果对河套断陷边界带发生的4次6级地震预测效果很好.  相似文献   

3.
基于2022年1月8日门源6.9级地震各项测震学指标分析发现,此次地震前后加卸载响应比呈现明显异常现象,具有短期异常趋势变化。采用类比归纳方法分析青藏高原东北部地区祁连山构造带冷龙岭断裂带6级以上地震的异常特征,认为其加卸载响应比(LURR)通常在1左右浮动,在显著地震发生前2个月逐渐上升至峰值,但强震并不发生在峰值点,而是在降低回落到1左右滞后一段时间(通常是10天,甚至需要更长时间)发生地震,且震级越大,滞后时间相对越长。该区域强余震具有类似特征。加卸载响应比的这种特征可以对震中周边区域及构造带特征相似区域的地震预测及震后趋势判断提供参考价值。  相似文献   

4.
加卸载响应比是一种刻画震源区介质损伤程度的物理学参数,它通过随时间的变化来反映地震孕育的过程来进行地震预测。通过对1990—1999年新疆地区部分中强地震前加卸载响应比时空演化特征进行分析,并基于该理论得到孕震积分的概念应用于震例中。结果表明:中强震震前在震中附近可能存在多个高加卸载响应比值区,它们大致围成椭圆状或环状,地震通常发生在异常高值波动或减弱的过程中;异常峰值至发震时间比理论时间要短,这可能表明新疆地区构造活动剧烈,孕震周期较短。  相似文献   

5.
加卸载响应比20年及其展望   总被引:1,自引:0,他引:1  
地震孕育过程是一个非线性、不可逆的过程,震源区介质的加载响应不同于卸载响应,这种加载响应与卸载响应的差别可以定量地刻画地震的孕育过程。基于这个物理概念,提出了一个新的参数加卸载响应比,作为一类地震前兆,用来定量预测强震的发生。在本文中,首先简单回顾了加卸载响应比的发展历史,然后详细介绍了地震震例检验、数值计算、实验研究、地震预测精度、可信度等方面的内容,最后对加卸载响应比的前景进行了展望。  相似文献   

6.
薛丁 《高原地震》2007,19(4):16-19
以金沙江-红河边界带和反映地震活动空间集中度C值的结合为例,对基于活动地块边界带的测震学参数强震预测进行了探索,结果对丽江地震预测效果很好。这对边界带的地震危险性判定有某种参考价值。  相似文献   

7.
基于构造的测震学参数在鲁东-黄海地块的应用   总被引:1,自引:1,他引:0  
以基于构造的测震学参数分析为思路,利用地震构造分区和地质构造单元的划分结果,检验了基于活动边界带的测震学参数方法的可行性;将活动地块内部(地质构造复杂且地震活动频繁)构造单元与测震学参数相结合,研究中强震前震源区所在的构造单元测震学参数的变化特征,提取具有中期预测意义的震兆标志,为中强震的预测提供理论依据。结果显示:中强地震前,郯庐断裂带(鲁东-黄海地块西边界带)及扬子地块(鲁东-黄海地块内部构造单元)D、C值异常过程明显,且各有特点,证明了基于活动地块内部构造单元的测震学参数方法具有良好的可行性。  相似文献   

8.
由中国科学家提出的"中国大陆强震受控于活动地块运动与变形"的假说,不仅可用于解释中国大陆强震的空间分布,同时基于其理论和定义可将中国大陆划分为6个Ⅰ级活动地块和22个Ⅱ级活动地块。活动地块之间的边界带往往由活动构造带组成,一般宽约几km至百余km,是强烈地震的多发区。活动地块假说指出,已发生的近100%的8级以上强震、约80%的7级以上强震震中均位于地块边界带上。近年来,中国大陆几次7级以上强震也都发生在活动地块边界带,这不仅验证了活动地块假说的理论模型,同时还预测了未来强震就发生在活动地块边界带内某些有利于应力集中的部位。活动地块假说经过近20a的发展,已建立并逐步完善了其理论框架,奠定了中国活动构造与强震预测的理论基础,正推动着强震预测由概率预测向物理预测过渡。但就活动地块的概念和理论框架而言,还存在的诸多问题需进一步回答和解释。众所周知,强震是活动地块边界带特殊构造部位应变逐渐积累、介质突发失稳和能量释放的结果,地震预测的突破性进展需要建立在充分理解其整个物理过程的基础之上。因此,以边界带断裂的活动性、现今的变形状态、深浅构造的耦合关系、强震孕育环境及震源物理模型为主要研究内容,开展针对活动地块边界带强震活动机理与预测的研究,是活动地块理论完善和研究未来关注的重要内容和重要科学问题。  相似文献   

9.
加卸载响应比理论是描述震源区介质损伤程度的一种地震预测方法。基于加卸载响应比理论,对2016年11月25日阿克陶M_S6.7地震前加卸载响应比时空演化特征和异常区的孕震积分时程曲线进行分析。结果表明,本次地震前,研究区出现了多个加卸载响应比高值区域,异常区呈现为环状或片状,随着地震孕育过程,异常区往震源附近迁移,发震地点在异常区边缘和内部,地震发生在异常高值减弱过程中,异常峰值到发震时间为1个月,远小于理论发震时间,这表明了研究区构造活动剧烈,孕震周期短的特征。  相似文献   

10.
对台湾地区加卸载响应比沿时间进程的发展趋势进行分析,结果显示:台湾MS≥7.0级地震前加卸载响应比可能出现高值异常或小幅度的突升现象;超过50%的7级强震前,加卸载响应比出现趋势上升异常,未来地震震级与趋势异常上升幅度、异常持续时间之间呈线性正相关,即异常持续时间越长,其上升的异常幅度也越大,未来地震的震级也越大。出现趋势上升异常的地震震中均处在北纬24°以南的台湾东带区域。  相似文献   

11.
王双绪  张希  张四新  张晓亮 《地震》2004,24(4):73-79
强震前中期阶段(1~3年或稍长)区域性形变异常往往表现出3个方面的共性特征: ① 区域垂直运动变形呈现与构造有关的异常隆起区、 垂直差异变形高梯度带(有的还呈“四象限”)分布特征; ② 水平运动变形呈现与活动地块及断裂构造有关的、 以剪切变形为主的高应变集中区(带)特征; ③ 区域性垂直形变异常区与水平形变的高应变分布区共生的特征。 分析这些异常共性特征的形成机制, 初步认为: 它们是在基本统一的大区域构造应力场控制下, 不同层次块体系统运动及其边界带变形的非平稳、 非协调性, 在活动地块边界地带和地块内部次级断裂构造部位产生变形差异而导致应力-应变积累、 孕育强震到一定阶段的结果。 在此基础上, 分析探讨了基于区域性形变异常共性特征、 结合地质构造活动背景进行强震中期预测的意义。  相似文献   

12.
分析了2004年3月24日内蒙古东乌珠穆沁旗5.9级地震前东北地区地震活动背景、震中周围中小地震活动图像和地震学参数异常过程。在地震发生前,震中及邻区地震活动明显增强,地震活动从无序到有序,出现了孕震空区、地震条带。一些地震活动性参数出现了中、短期异常。  相似文献   

13.
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out.  相似文献   

14.
岷山断块位于中国南北强震构造带的中段, 区域地质构造复杂, 活动断裂众多, 强震频发。 4条不同走向的活动断裂NE向龙门山构造带的茂汶断裂、 NWW向东昆仑断裂带的塔藏断裂、 近NS向的岷江断裂和NNW—NS向的虎牙断裂构成岷山断块的南北西东边界。 638—2017年该区域共发生了10次6级以上破坏性地震, 2017年九寨沟7.0级地震就是其中之一。 结合区域构造背景, 对岷山断块所发生的6级以上地震的发震构造特征、 地震活动特性进行归纳总结, 综合分析该区域地震地质特征及地震危险性, 得出以下认识: ① 地震分布空间分区特征显著, 破坏性强震发震构造多为活动性较强的岷山断块东西边界断裂, 震中位置多位于两组或多组活动断裂构造的交会或穿切部位; ② 地震分布时间特征表现为随着时间发展具有迁移回返和原地复发性等特点; ③ 岷山断块东西边界断裂破坏性地震的发生具有一定的时间关联性, 东边界虎牙断裂1973—2017年的地震序列为西边界岷江断裂1933—1960年地震序列约40年后的地震构造响应; ④ 未来岷山断块仍应是继续关注的强震潜在危险区, 岷江断裂中北段的强震潜在危险区是近期值得深入研究的地区之一。  相似文献   

15.
在对构造运动差异较大的柯坪块体和天山中部地区地震活动研究基础上,深入分析了这两个不同构造单元的中强地震活动对整体新疆地震形势的影响。不同构造环境下不同构造单元地震活动差异性很大。柯坪块体内构造运动强烈,它是新疆6级地震主要活动区之一。6级地震发生后的1年内,天山地震带是中强地震的主要响应区,在时间上具有短期预测意义。位于特殊构造环境的中天山地区地震少,地震强度低。4次5级地震后的1~3年,新疆地震活动呈明显增强趋势,中天山地区中强地震活动对周边地区中强地震活动会产生触发作用。  相似文献   

16.
Introduction The northeast margin of Qinghai-Xizang block has become the place with close attentions from geo-specialists at home and abroad for its significant tectonic movement and intensive seismicity. Quite a number of achievements have been obtained from the studies on geological structures and strong earthquake activities (DING, LU, 1989, 1991; GUO, et al, 1992, 2000; GUO, XIANG, 1993; HOU, et al, 1999; Tapponnier, et al, 1990; Gaudemer, et al, 1995). In the Development Program…  相似文献   

17.
利用四川数字地震台网和流动地震台站在芦山MS7.0地震震后(2013年4月20日—6月23日)记录到的2026次区域地震事件的28188条P波到时资料,采用地震层析成像方法反演得到了芦山地震震源区及其周边区域中上地壳P波三维速度结构. 结果表明,浅部地壳的P波速度异常分布特征与地表地质构造、 地形和岩性密切相关,即成都断陷盆地表现出与第四纪沉积有关的低速异常区;犍为、 乐山一带的川中微升区和川青块体龙门山以西的邻近地带均表现为与构造抬升有关的高速异常;宝兴、 康定附近分布的基性火山岩及火山碎屑岩均呈局部高速异常分布. 芦山地震震源位于高低速异常分界线附近且偏向高速体一侧,其下方存在明显的低速异常分布,可能与流体的存在有关. 流体的作用导致中上地壳内部发震层的弱化,使孕震断层易于破裂,可能对芦山地震起到了触发作用. 芦山地震与汶川地震两次地震的余震密集区相距50 km,这50 km地震空区震源体的深度范围附近目前正处于高速异常区内,加之龙门山断裂带西南段又具有比较典型的断错地貌发育,使得该段地震空区(大邑—邛崃活动断裂破裂空段)现在所处的深浅部构造环境变得复杂,其潜在的地震危险性仍值得进一步关注.   相似文献   

18.
川滇地区地壳上地幔三维速度结构研究   总被引:95,自引:22,他引:95  
根据云南和四川地震台网174个台站记录的4625个区域地震初至P波和S波走时资料,并结合其它深部地球物理资料,确定了川滇地区地壳上地幔三维速度结构.在上地壳速度异常分布中,四川盆地为正异常,川西高原为负异常,龙门山断裂带为正、负异常的边界.龙门山断裂、鲜水河断裂以及红河断裂等,在下地壳和上地幔的速度异常中仍显示出构造分界特征,说明它们可能穿透了莫霍界面.腾冲火山区和攀西构造带在50km深度上呈现负速度异常,与上地幔温度和物质组成的差异相联系.川滇地区地壳结构的总体特征是:地壳和上地幔的低平均速度,地壳厚度变化剧烈,地壳和(或)上地幔存在高导层、高热流值.这些同印度板块与欧亚板块碰撞的构造背景有关.川滇菱形块体在地壳内总体上为正常或正异常速度,而其边界的深大走滑断裂存在负速度异常,它有助于地壳块体沿断裂的侧向挤出.在主要的地震带上,中下地壳的负速度异常与地震活动性相关.多数强烈地震发生在具有正速度异常或正常速度分布的上中地壳深度上,而其下方则通常是负速度异常带.   相似文献   

19.
五大连池火山构造地震空间分布及其构造含义   总被引:3,自引:0,他引:3  
在对五大连池地震台1983年以来观测到的五大连池火山区的地震记录复核的基础上,测定了火山构造地震的空间分布状态。研究结果表明该地区地震活动均为壳内地震。受火山构造环境影响,地震活动存在着外围边缘强,震源深度分布深;内部弱,震源深度分布浅的差异。火山区内部地震深度分布优势在5km—8km,有3个地震分布密集区,震中分布呈明显的沿火山构造断层成带分布特性。在地震条带交汇处,震源深度起伏变化大,是火山构造活动强烈部位  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号