首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Sedimentology》2018,65(6):1827-1858
Dedolomitization is a common diagenetic process in shallow burial environments and is often associated with sulphates in mixed carbonate‐evaporite successions. In these settings, elevated Ca2+/Mg2+ ratios necessary for dedolomitization result from the dissolution of sulphate phases by the incursion of undersaturated groundwater. Reported dedolomite textures from other studies are varied, but the most prevalent is a rhombic texture interpreted to result from the partial to complete pseudomorphic replacement of secondary dolomite rhombs formed in the burial diagenetic realm. In this study of primary cryptocrystalline to finely crystalline dolomicrites in the Prairie Evaporite Formation of north‐eastern Alberta, dedolomitization has resulted in sutured to loosely packed mosaics of dedolomite that range from subhedral to distinctly euhedral (rhombic) crystal fabrics; however, no prior aggrading neomorphism producing dolomite rhombs is evident in the precursor dolomicrites. Non‐pseudomorphic dedolomitization of the dolomicrites results in textures that include rhombic dedolomite crystals with cloudy cores comprising remnant dolomicrite and clear rims. These textures are similar to those observed in the pseudomorphic dedolomitization of secondary dolomite rhombs. The Prairie Evaporite Formation of north‐eastern Alberta has experienced extensive karstification near the erosional margin of the sedimentary succession. Dedolomitization of dolomicrites occurs in marker beds within the Prairie Evaporite succession associated with evaporite karstification. Along with stratigraphic and petrographic considerations, stable isotope results support the interpretation of a shallow dedolomitization event influenced by meteoric waters derived from the basin margin. Negative δ 18O and low δ 13C values (averages of −13·6‰VPDB and 0·5‰VPDB, respectively) of the dedolomite, compared with those of the primary dolomicrite (averages of −6·0‰VPDB and 1·2‰VPDB, respectively), point to isotopically light diagenetic fluids. These results show that rhombic dedolomite textures can form through shallow, non‐pseudomorphic dedolomitization of dolomicrites by meteoric fluids in the presence of sulphates, with resulting textures that are similar to the pseudomorphic dedolomitization of secondary dolomite rhombs.  相似文献   

2.
Calcitized Jurassic dolostones from central Mount Lebanon (Kesrouane Formation) are discussed utilizing petrographic, mineralogical and geochemical data. In particular, two sequential extraction methods for both major/trace elements and stable isotope analyses provide results that support and refine conventional bulk analyses data. The new data demonstrate that the major dedolomitization phase of the investigated Jurassic carbonates occurred as a result of the migration of karst‐related meteoric waters (characterized by soil‐derived carbon, and estimated δ18OV‐SMOW composition between ?7·2‰ and ?3·4‰) into previously dolomitized horizons within the limestone rock, during the final uplift and emergence of Mount Lebanon, after Palaeogene time. The study demonstrates that, in this case, the mechanisms of dedolomitization and their resulting fabrics are controlled primarily by the texture of the original dolomite rock. Pervasively dolomitized rocks, where the micritic matrix is entirely dolomitized, show calcitization mainly through dissolution/precipitation. By contrast, the rock textures that still include a considerable amount of limey micritic matrix – spared from dolomitization – are more prone to mole per mole and mimic replacement of the dolomite crystals by calcite.  相似文献   

3.
The Middle Devonian Winnipegosis carbonate unit in south‐central Saskatchewan is partially to completely dolomitized. Two major types of replacive dolomite are distinguished. Microcrystalline to finely crystalline dolomite (type 1) displays nonplanar‐a to planar‐s textures, mimetically replaces the precursor limestone, accounts for about four‐fifths of dolomite phases volumetrically, and mainly occurs in the Winnipegosis mounds and the Lower Winnipegosis Member directly underlying the mounds. Medium crystalline dolomite (type 2) shows planar‐s to planar‐e textures, commonly occurs in the Lower Winnipegosis and Brightholme members, and decreases upward in abundance. The 87Sr/86Sr ratios of type 1 dolomite (0·70795 to 0·70807) fall within the estimated Sr‐isotopic range for Middle Devonian marine carbonates. Stratigraphic, petrographic and geochemical data constrain the formation of type 1 dolomite to hypersaline sea water in a near‐surface environment, after marine cementation and sub‐aerial diagenesis and prior to precipitation of the Middle Devonian Leofnard salts. Movement of dolomitizing fluids could be driven by density differences and elevation head. The shift to lower δ18O values of type 1 dolomite [?7·4 to ?5·1‰ Vienna Pee Dee Belemnite (VPDB)] is interpreted as the result of recrystallization at elevated temperatures during burial. Type 2 dolomite has higher 87Sr/86Sr ratios (0·70809–0·70928), suggesting that the dolomite probably formed from basinal fluids with an increased richness in the radiogenic Sr isotope. In type 2 dolomite, Sr2+ concentrations are lower, and Fe2+ and Mn2+ concentrations are higher, compared with the associated limestone and type 1 dolomite. Type 2 dolomite is interpreted as having been formed from upward‐migrating basinal fluids during latest Devonian and Carboniferous period.  相似文献   

4.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   

5.
MUCHEZ  NIELSEN  SINTUBIN  & LAGROU 《Sedimentology》1998,45(5):845-854
Two calcite cements, filling karst cavities and replacing Lower Carboniferous limestones at the Variscan Front Thrust, were precipitated after mid-Jurassic Cimmerian uplift and subsequent erosion but before late Cretaceous strike-slip movement. The first calcite (stage A) is nonferroan and crystals are coated by hematite and/or goethite. These minerals also occur as inclusions along growth zones. The calcite lattice contains < 0·07 mol.% Fe, but Mn concentrations can be as high as 0·72 mol.% in bright yellow luminescent zones. Primary, originally one-phase, all-liquid, aqueous inclusions have a final melting temperature between ?0·2° and +0·2 °C, indicating a meteoric origin of the ambient water. The δ13C and δ18O values of the calcites are between ?7·3‰ and ?6·3‰, ?7·8‰ and ?5·5‰ on the Vienna PeeDee Belemnite (VPDB) scale, respectively. The second calcite (stage B) consists of ferroan (0·13–0·84 mol.% Fe) blocky crystals with Mn concentrations between 0·34 and 0·87 mol.%. Primary, single-phase aqueous fluid inclusions indicate precipitation from a meteoric fluid below 50 °C . The δ13C values of stage B calcites vary between ?7·3‰ and ?2·1‰ VPDB and the δ18O values between ?7·9‰ and ?7·2‰ VPDB. A precipitation temperature below 50 °C for the stage A calcites and the presence of iron oxide/hydroxide inclusions in the crystals indicate near-surface precipitation conditions. Within this setting, the geochemistry of the nonferroan stage A calcites reflects precipitation under oxic to suboxic conditions. The ferroan stage B calcites precipitated in a reducing environment. The evolution from the stage A to stage B calcites and the associated geochemical changes are interpreted to be related to the change from semiarid to humid conditions in western Europe during late Jurassic–Cretaceous times. A change in humidity can explain the evolution of groundwater from oxic/suboxic to reducing conditions during calcite precipitation. The typically higher δ13C values of the stage B compared to the stage A calcites can be explained by a smaller contribution of carbon derived from soil-zone processes than from carbonate dissolution in the groundwater under humid conditions. The small shift to lower δ18O between stage A and B calcites may be caused by a higher precipitation temperature or a decrease in the δ18O value of the meteoric water. This decrease could have been caused by a change in the source of the air masses or by an increase in the amount of rainfall during the early mid-Cretaceous. Although the latter interpretation is preferred, it cannot be proven.  相似文献   

6.
ABSTRACT This paper examines the diagenetic history of dual (i.e. matrix and fracture) porosity reservoir lithologies in Cretaceous to Eocene carbonate turbidites of the Ionian fold and thrust belt, close to the oil‐producing centre of Fier–Ballsh (central Albania). The first major diagenetic event controlling reservoir quality was early cementation by isopachous and syntaxial low‐Mg calcite. These cements formed primarily around crinoid and rudist fragments, which acted as nucleation sites. In sediments in which these bioclasts are the major rock constituent, this cement can make up 30% of the rock volume, resulting in low effective porosity. In strata in which these bioclasts are mixed with reworkedmicrite, isopachous/syntaxial cements stabilized the framework, and matrixporosity is around 15%. The volumetric importance of these cements, their optical and luminescence character (distribution and dull orange luminescence) and stable isotopic signal (δ18O and δ13C averaging respectively; ?0·5‰ VPDB and +2‰ VPDB) all support a marine phreatic origin. Within these turbidites and debris flows, several generations of fractures alternated with episodes of cementation. A detailed reconstruction of this history was based on cross‐cutting relationships of fractures and compactional and layer‐parallel shortening (LPS) stylolites. The prefolding calcite veins possess orange cathodoluminescence similar to that of the host rock. Their stable isotope signatures (δ18O of ?3·86 to ?0·85‰ VPDB and δ13C of – 0·14 to + 2·98‰ VPDB) support a closed diagenetic rock‐buffered system. A similar closed system accounts for the selectively reopened and subsequently calcite‐cemented LPS stylolites (δ18O of ?1·81 to ?1·14‰ VPDB and δ13C of +1·52 to +2·56‰ VPDB). Within the prefolding veins, brecciated host rock fragments and complex textures such as crack and seal features resulted from hydraulic fracturing. They reflect expulsion of overpressured fluids within the footwall of the frontal thrusts. After folding and thrust sheet emplacement, some calcite veins are still rock buffered (δ18O of ?0·96 to +0·2‰ VPDB and δ13C of +0·79 to +1·37‰ VPDB), whereas others reflect external (i.e. extraformational) and thus large‐scale fluid fluxes. Some of these veins are linked to basement‐derived fluid circulation or originated from fluid flow along evaporitic décollement horizons (δ18O around +3·0‰ VPDB and δ13C around +1·5‰ VPDB). Others are related to the maturation of hydrocarbons in the system (δ18O around ?7·1‰ VPDB and δ13C around +9·3‰ VPDB). An open joint system reflecting an extensional stress regime developed during or after the final folding stage. This joint system enhanced vertical connectivity. This open joint network can be explained by the high palaeotopographical position and the folding of the reservoir analogue within the deformational front. The joint system is pre‐Burdigalian in age based upon a dated karstified discordance contact. Sediment‐filled karst cavity development is linked to meteoric water infiltration during emergence of some of the structures. Despite its sediment fill, the karst network is locally an important contributor to reservoir matrix porosity in otherwise tight lithologies. Development of secondary porosity along bed‐parallel and bed‐perpendicular (i.e. layer‐parallel shortening) stylolites is interpreted as a late‐stage diagenetic event associated with migration of acidic fluids during hydrocarbon maturation. Development of porosity along the LPS system enhanced the vertical reservoir connectivity.  相似文献   

7.
Six holes were drilled to depths of 30–69 m in the shallow lagoon of Aitutaki in the southern Cook Islands. One hole encountered pervasively dolomitized reef limestones at 36 m subbottom depth, which extended to the base of the drilled section at 69·3 m. This hole was drilled near the inner edge of the present barrier reef flat on the flank of a seismically defined subsurface ridge. Both the morphology and biofacies indicate that this ridge may represent an outer reef crest. Mineralogy, porosity and cementation change in concert downhole through three zones. Zone 1, 0–9 m, is composed of primary skeletal aragonite and calcite with minor void-filling aragonite and magnesian calcite cement of marine phreatic origin. Zone 2, 9–36 m, is composed of replacement calcite and calcite cement infilling intergranular, intragranular, mouldic and vuggy porosity. Stable isotopes (mean δ18O=—5·4‰ PDB for carbonate; δD =—50‰ SMOW for fluid inclusions) support the petrographic evidence indicating that sparry calcite cements formed in predominantly freshwater. Carbon isotope values of —4·0 to —11·0‰ for calcite indicate that organic matter and seawater were the sources of carbon. Zone 3, 36–69·3 m, is composed of replacement dolostone, consisting of protodolomite with, on average, 7 mol% excess CaCO3 and broad and weak ordering X-ray reflections at 2·41 and 2·54 A. The fine-scale replacement of skeletal grains and freshwater void-filling cements by dolomite did not significantly reduce porosity. Stable isotopes (mean δ18O=+2·6‰0 PDB for dolomite; maximum δD =—27‰ SMOW for fluid inclusions) and chemical composition indicate that the dolomite probably formed from seawater, although formation in the lower part of a mixed freshwater-seawater zone, with up to 40% freshwater contribution, cannot be completely ruled out. The carbon (δ13C=2·7‰) and magnesium were derived from seawater. Low-temperature hydrothermal iron hydroxides and associated transition metals occur in void space in several narrow stratigraphic intervals in the limestone section that was replaced by dolomite. The entire section of dolomite is also enriched in these transition metals. The metals dispersed throughout the dolostone section were introduced at the time of dolomitization by a different and later episode of hydrothermal circulation than the one(s) that produced the localized deposits near the base of the section. The primary reef framework is considered to have been deposited during several highstands of sea level. Following partial to local recrystallization of the limestone, a single episode of dolomitization occurred. Both tidal and thermal pumping drove large quantities of seawater through the porous rocks and perhaps maintained a wide mixing zone. However, the isotopic, geochemical and petrographic data do not clearly indicate the extent of seawater mixing.  相似文献   

8.
Pervasive dolomites occur preferentially in the stromatoporoid biostromal (or reefal) facies in the basal Devonian (Givetian) carbonate rocks in the Guilin area, South China. The amount of dolomites, however, decreases sharply in the overlying Frasnian carbonate rocks. Dolostones are dominated by replacement dolomites with minor dolomite cements. Replacement dolomites include: (1) fine to medium, planar‐e floating dolomite rhombs (Rd1); (2) medium to coarse, planar‐s patchy/mosaic dolomites (Rd2); and (3) medium to very coarse non‐planar anhedral mosaic dolomites (Rd3). They post‐date early submarine cements and overlap with stylolites. Two types of dolomite cements were identified: planar coarse euhedral dolomite cements (Cd1) and non‐planar (saddle) dolomite cements (Cd2); they post‐date replacement dolomites and predate late‐stage calcite cements that line mouldic vugs and fractures. The replacement dolomites have δ18O values from ?13·7 to ?9·7‰ VPDB, δ13C values from ?2·7 to + 1·5‰ VPDB and 87Sr/86Sr ratios from 0·7082 to 0·7114. Fluid inclusion data of Rd3 dolomites yield homogenization temperatures (Th) of 136–149 °C and salinities of 7·2–11·2 wt% NaCl equivalent. These data suggest that the replacive dolomitization could have occurred from slightly modified sea water and/or saline basinal fluids at relatively high temperatures, probably related to hydrothermal activities during the latest Givetian–middle Fammenian and Early Carboniferous times. Compared with replacement dolomites, Cd2 cements yield lower δ18O values (?14·2 to ?9·3‰ VPDB), lower δ13C values (?3·0 to ?0·7‰ VPDB), higher 87Sr/86Sr ratios (≈ 0·7100) and higher Th values (171–209 °C), which correspond to trapping temperatures (Tr) between 260 and 300 °C after pressure corrections. These data suggest that the dolomite cements precipitated from higher temperature hydrothermal fluids, derived from underlying siliciclastic deposits, and were associated with more intense hydrothermal events during Permian–Early Triassic time, when the host dolostones were deeply buried. The petrographic similarities between some replacement dolomites and Cd2 dolomite cements and the partial overlap in 87Sr/86Sr and δ18O values suggest neomorphism of early formed replacement dolomites that were exposed to later dolomitizing fluids. However, the dolomitization was finally stopped through invasion of meteoric water as a result of basin uplift induced by the Indosinian Orogeny from the early Middle Triassic, as indicated by the decrease in salinities in the dolomite cements in veins (5·1–0·4 wt% NaCl equivalent). Calcite cements generally yield the lowest δ18O values (?18·5 to ?14·3‰ VPDB), variable δ13C values (?11·3 to ?1·2‰ VPDB) and high Th values (145–170 °C) and low salinities (0–0·2 wt% NaCl equivalent), indicating an origin of high‐temperature, dilute fluids recharged by meteoric water in the course of basin uplift during the Indosinian Orogeny. Faults were probably important conduits that channelled dolomitizing fluids from the deeply buried siliciclastic sediments into the basal carbonates, leading to intense dolomitization (i.e. Rd3, Cd1 and Cd2).  相似文献   

9.
Development of a diagenetic anhydrite bed at the base of the Cretaceous Maha Sarakham Saline Formation (the `Basal Anhydrite' member) of the Khorat Plateau in north-eastern Thailand took place due to leaching and/or pressure dissolution of salt at the contact between an underlying active sandstone aquifer system and an overlying massive halite-dominated evaporite sequence. Basal evaporites composed of halite with intercalated anhydrite of the latter sequence are undergoing dissolution as a result of subsurface flushing, with anhydrite produced as the insoluble residue. The result is a 1·1 m thick interval of nodular anhydrite displaying unique, basin-wide continuity. Observed textures, petrographic features and chemical data from the anhydrite and associated authigenic minerals support the origin of the Basal Anhydrite Member as an accumulation residue from the dissolution of the Maha Sarakham salts. Petrographically, the anhydrite in this unit is made up of crystals that are blocky and recrystallized, sheared, generally elongated and broken, and is bounded at the bottom by organic-rich stylolite surfaces. Authigenic and euhedral dolomite and calcite crystals are associated with the anhydrite. Traces of pyrite, galena and chalcopyrite are present along the stylolite surfaces suggesting supply of fresh water from the underlying sandstone at highly reducing conditions of burial. The δ34S of sulphate in the Basal Anhydrite averages 15 ‰ (CDT) and falls within the isotopic composition of the anhydrite in the Cretaceous Maha Sarakham Formation proper and the Cretaceous values of marine evaporites. Measured δ18O in dolomite range from ?4·37 to ?14·26‰ (PDB) suggesting a re-equilibration of dolomite with basinal water depleted in 18O and possible recrystallization of dolomite under relatively elevated temperatures. The δ13C, however, varies from +1·57 to ?2·53‰ (PDB) suggesting a contribution of carbon from oxidation of organic matter. This basal anhydrite bed, similar to basinwide beds found at the bottom of many giant evaporite sequences, has always been considered to be depositional. Here, at the base of the Maha Sarakham Formation, we demonstrate that the anhydrite is diagenetic in origin and was formed by accumulation of original anhydrite by dissolution of interbedded halite from waters circulating though the underlying aquifer: it represents an `upside-down' caprock.  相似文献   

10.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

11.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

12.
Dedolomitization of a dolocrete profile hosted in Mio-Pleistocene siliciclastic deposits in the area of Kuwait City, Arabian Gulf was investigated. Dolocrete dolomite crystals vary considerably in size, shape and internal structure; however, they are mostly zoned. Zonation is usually due to the alteration of cloudy and clear zones. The cloudy zones, which are mostly formed of disordered metastable dolomite, are more susceptible to dedolomitization than the stable, well ordered clear zones. Two modes of dedolomitization were recognized; the first involves complete dissolution of the metastable dolomite followed by precipitation of intracrystalline cavity-filling calcite. The second is a pseudomorphic replacement of dolomite by calcite. This replacement takes place by the simultaneous dissolution of dolomite and precipitation of calcite in such a manner that the original dolomite fabrics are inherited in the dedolomite. Exposed and near-surface dolocrete profile (less than 5 m deep) are almost completely dedolomitized and altered to secondary calcrete whereas subsurface profiles are slightly dedolomitized. Dedolomitization of the sub surface dolocrete profiles may indicate the effect of flushing by fresh groundwater; which flows from west to east, whereas the alteration of the exposed dolocrete profile could be attributed to be an effect of meteoric water. A new mode of calcrete genesis by dedolomitization and/or complete calcitization of precursor dolocrete is suggested.  相似文献   

13.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

14.
采用野外观察、室内薄片鉴定及多项地球化学分析技术方法,对塔里木盆地柯坪地区上寒武统表生溶蚀型藻格架白云岩的特征及成因进行了研究。宏观上,藻格架白云岩呈丘状、透镜状夹于潮坪相白云岩层间,由于差异性溶蚀,发育了大量表生溶蚀孔。微观上,藻格架由富藻的泥粉晶白云石组成,而架间孔由浅色的亮晶白云石充填。藻格架泥粉晶白云石呈他形—半自形,镶嵌结构,具有暗红色—橙红色的阴极发光,较高的Na、K含量,较低的Fe含量;δ13C为-0.572‰~0.124‰、平均值-0.116‰,δ18O为-5.391‰~-4.983‰、平均值-5.240‰,表明其形成于准同生阶段盐度较高的相对氧化环境中。架间充填的亮晶白云石胶结物,呈半自形—自形中细晶,具有昏暗的阴极发光或者不发光,较低的Na、K含量,较高的Fe含量,δ13C值为-0.662‰~-0.251‰、平均值为-0.460‰;δ18O值为-6.639‰~-5.939‰、平均值-6.267‰,表明其形成于相对还原的埋藏环境。稀土元素分析结果表明,二者均具有LREE轻微富集、HREE亏损、Eu负异常特征,与海相泥晶灰岩稀土元素配分模式相似,揭示了其白云化流体均来自于原始的海水。在溶蚀作用方面,亮晶白云石胶结物相对泥粉晶白云石藻格架更易于溶蚀。前者在大气水表生溶蚀过程中,主量元素Ca、Mg丢失显著,Mg/Ca值由0.955降至0.007,微量元素Na、K丢失相对明显,Na/Ca值由原来的3.8×10-4降为1.9×10-4,K/Ca值由1.1×10-3降至检测限以下,而不改变稀土元素的配分模式。这些特征表明,表生溶蚀过程在元素特征上是一个去白云化的盐度降低过程,而这一过程中基本无稀土元素的带入带出。  相似文献   

15.
In topographic flat areas, sedimentary settings may vary from one outcrop to another. In these settings, calcite precipitates may yield macroscopically similar columnar features, although they are products of different sedimentary or diagenetic processes. Three columnar calcite crystal fabrics, i.e. rosettes, palisade crusts and macro-columnar crystal fans, have been differentiated near and at the contact between Upper Tournaisian dolomites and limestones along the southern margin of the Brabant-Wales Palaeohigh. Their petrographic characteristics, and geochemical and fluid inclusion data provide information on the (dia)genetic processes involved. Rosettes composed of non-luminescent columnar calcite crystal fans (1–5 cm in diameter) developed on top of one another, forming discrete horizons in repetitive sedimentary cycles. The cycles consist of three horizons: (I) a basal horizon with fragments from the underlying horizon, (II) a micrite/microspar horizon with incipient glaebules, (III) an upper horizon consisting of calcite rosettes, with desiccation features. The petrographical features and δ18O signatures of −10·0 to −5·5‰ and δ13C values of −5·5 to −3·2‰ support either evaporative growth, an evaporative pedogenic origin, or overprinting of marine precipitates. Palisade crusts, composed of a few to 10 mm long non-luminescent calcite crystals, coat palaeokarst cavities. Successive palisade growth-stages occur which are separated by thin laminae of micrite or detrital quartz, displaying a geopetal arrangement. Palisade crusts are interpreted as intra-Mississippian speleothems. This interpretation is supported by their petrographic characteristics and isotopic signature (δ18O = −8·7 to −6·5‰ and δ13C = −4·8 to −2·5‰). Macro-columnar crystals, 1–50 cm long, developed mainly perpendicular to cavity walls and dolomite clasts. Crystal growth stages in the macro-columnar crystals are missing. δ18O values vary between −16·4 and −6·8‰ and δ13C values between −5·2 and −0·9‰. These features possibly support a late diagenetic high temperature precipitation in relation to hydrothermal karstification.  相似文献   

16.
Uranium-series dated stalagmites from Oman indicate that pluvial conditions prevailed from 6.3 to 10.5, 78 to 82, 120 to 130, 180 to 200 and 300 to 330 kyr B.P.; all of these periods coincide with peak interglacials. Oxygen (δ18O) and hydrogen (δD) isotope ratios of speleothem calcite and fluid inclusions reveal the source of moisture and provide information on the amount of precipitation, respectively. δ18O and δD values of stalagmites deposited during peak interglacials vary between ?8 and ?4 ‰ (VPDB) and ?53 and ?20‰ (Vienna Standard Mean Ocean Water [VSMOW]) respectively, whereas modern stalagmites range from ?2.6 to ?1.1‰ in δ18O (VPDB) and ?7.6 and ?3.3‰ in δD (VSMOW), respectively. The growth and isotopic records indicate that during peak interglacial periods, the limit of the monsoon rainfall was shifted far north of its present location and each pluvial period was coinciding with an interglacial stage of the marine oxygen isotope record.  相似文献   

17.
This paper describes the occurrence of dolostone and the mechanism of dolomitization of the Upper Devonian Gölbo?az? Formation in the allochthonous Taurus Mountains Alada? unit in Turkey. The Upper Devonian Gölbo?az? Formation carbonates, with dominant ostracod-bearing mudstone and wackestone, formed tidal and subtidal environments, and some of these rocks were dolomitized from shallow to deep burial. On the basis of the field, the petrographic and geochemical features, four different replaceable and cement dolostone phases have been recognized. The replacive dolostones contain (1) very fine to fine crystalline planar-s dolostone (df1), (2) medium to coarse crystalline planar-s to planar-e dolostone (df2), (3) coarse to very coarse crystalline non-planar-a dolostone (df3), and (4) coarse to very coarse crystalline planar dolostone cement (df4). The replacive dolostones are disordered to moderate the ordered and calcium-rich. They are non-stoichiometric and have 46–59 mol% CaCO3 and 41–54 mol% MgCO3 total contents. The df1 dolostones have MgCO3 contents of 41–54 mol%, the df2 dolostones have 41–53 mol%, the df3 dolostones have 49 mol%, and the df4 dolostones have 49–50 mol%, respectively. The Gölbo?az? dolostones have δ18O values of ?9.44 to ?2.20‰ Vienna Pee Dee Belemnite (VPDB) and δ13C values of ?1.58 to +2.52 VPDB. Sr, Na, Mn, and Fe concentrations of replacive dolostones are 74–184, 148–593, below detection level (bdl)–619, and 1049–9233 ppm, respectively. The petrographic and geochemical data demonstrate that the replacive dolostones occurred prior to the chemical compaction at shallow to intermediate burial depths from Late Devonian seawater and/or seawater lightly modified by water–rock interaction process and later recrystallized by basinal brines at increasing burial depths and temperature. The North American Shale Composite-normalized rare earth element values of both limestone and dolostone show very similar rare earth element patterns characterized by slightly or considerably negative cerium (Ce) anomalies and a clear depletion in all rare earth element species. The dedolomitization observed in the Gölbo?az? Formation is thought to occur by the oxidizing effect of the meteoric water in the shallow burial environment during the telodiagenesis.  相似文献   

18.
Upper Pliocene dolomites (‘white earth’) from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg‐carbonates (dolomite unit) occur as a 3·5‐ to 4‐m‐thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1‐ to 2‐μm‐sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca‐dolomite (51–54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0·27 to 0·48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. δ18O‐ and δ13C‐values in dolomites range from ?3·07‰ to 5·40‰ PDB (mean=0·06, σ=1·75) and from ?6·34‰ to ?0·39‰ PDB (mean=?3·55, σ=1·33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between δ18O and δ13C for dolomite is extremely low and negative (r=?0·05), whereas it is higher and positive (r=0·47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3?/CO32? groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi‐arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.  相似文献   

19.
Zoned calcites were found in the phragmacone chambers of three Sonniniid ammonites from marine Middle Jurassic sandstones (Isle of Skye, U.K.). Each ammonite has a unique sequence of up to nine zones of calcite which fill or partially fill the chambers. Zones are defined by changes in the density of minute opaque inclusions and variation in trace-element composition. Proximal (early) calcites have undulose extinction and some exhibit the specific fabrics of fascicular-optic and radiaxial fibrous calcites. Microdolomite inclusions are found in one specimen. Early calcites, interpreted as replacements after a single isopachous fringe of acicular carbonate (probably high magnesium calcite), are succeeded by blocky ferroan calcite cement. In one specimen there are two distinct generations of calcite, in the others there is a continuous mosaic incorporating both early calcites and late cement. Isotopic composition of the early calcite zones demonstrates the initial importance of organic derived carbon (δ13C =— 26‰, δ18O ‰ O). Further cementation and mineralogical stabilization took place at increased temperatures and probably after modification of the pore water isotopic composition (calcites with δ13C =— O‰, δ18O~— 10‰). The distinctive fabrics and zonal patterns probably developed during the replacement of the precursor cement and are not primary growth features. Reversals in isotopic and trace element trends are believed to be related to the rate of neomorphic crystal growth and hence to the degree of exchange with external pore waters. Further increase in temperature, probably during Tertiary igneous activity, gave rise to the extremely light δ18O values of the late cements in the ammonite which had previously had least contact with external waters (cements with δ13C ~ O, δ18O ~— 20‰).  相似文献   

20.
The study focuses on the formation of lacustrine dolomite in late Miocene lakes, located at the East Mediterranean margins (Northern Israel). These lakes deposited the sediments of the Bira (Tortonian) and Gesher (Messinian) formations that comprise sequences of dolostone and limestone. Dolostones are bedded, consist of small‐sized (<7 μm), Ca‐rich (52 to 56 mol %) crystals with relatively low ordering degrees, and present evidence for replacement of CaCO3 components. Limestones are comprised of a wackestone to mudstone matrix, freshwater macrofossils and intraclasts (mainly in the Bira Formation). Sodium concentrations and isotope compositions differ between limestones and dolostones: Na = ~100 to 150 ppm; ~1000 to 2000 ppm; δ18O = ?3·8 to ?1·6‰; ?2·0 to +4·3‰; δ13C = ?9·0 to ?3·4‰; ?7·8 to 0‰ (VPDB), respectively. These results indicate a climate‐related sedimentation during the Tortonian and early Messinian. Wet conditions and positive freshwater inflow into the carbonate lake led to calcite precipitation due to intense phytoplankton blooms (limestone formation). Dry conditions and enhanced evaporation led to precipitation of evaporitic CaCO3 in a terminal lake, which caused an increased Mg/Ca ratio in the residual waters and penecontemporaneous dolomitization (dolostone formation). The alternating lithofacies pattern reveals eleven short‐term wet–dry climate‐cycles during the Tortonian and early Messinian. A shift in the environmental conditions under which dolomite formed is indicated by a temporal decrease in δ18O of dolostones and Na content of dolomite crystals. These variations point to decreasing evaporation degrees and/or an increased mixing with meteoric waters towards the late Messinian. A temporal decrease in δ13C of dolostones and limestones and appearance of microbial structures in close association with dolomite suggest that microbial activity had an important role in allowing dolomite formation during the Messinian. Microbial mediation was apparently the main process that enabled local growth of dolomite under wet conditions during the latest Messinian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号