首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The difficulties of dating mafic dykes: an Antarctic example   总被引:5,自引:0,他引:5  
Archaen gneisses of the Vestfold Hills of East Antarctica are transected by several compositionally discrete suites of tholeiitic dykes. A representative of one of those suites, which has been dated in the present study, shows that not only Rb–Sr whole-rock isochrons, but also U–Pb zircon techniques (if not properly applied) can produce erroneous crystallisation ages. Two zircon populations were recovered from the mafic dyke itself, one of which is 2,483±9 Ma in age and clearly of xenocrystic origin. The other yields an age of 1,025±56 Ma, which is not ascribed to the magmatic crystallisation of the dyke, but rather to the time that it underwent metamorphic/metasomatic alteration as a response to high-grade tectonism in the adjacent mobile belt. It is presumed that the zircon in question formed by the breakdown of another mineral or minerals (possibly magmatic baddeleyite), due either to ingress of a siliceous fluid, or more probably by the release of silica from the breakdown of pyroxene to amphibole. A cogenetic 1–2 cm wide felsic vein, of late magmatic/early hydrothermal origin, also contains two zircon populations. Again, most of the grains therein, which are interpreted as of xenocrystic origin, grew at 2,483±9 Ma. However, a few euhedral zircons with very high U and Th contents grew at 1,248±4 Ma, which is taken to be the formation age of both the felsic vein and the enclosing mafic dyke.  相似文献   

2.
Archaean gneisses in the Vestfold Block, Antarctica are cutby abundant tholeiite and rare alkaline dykes. At least fivegenerations of dykes have been recognized on the basis of intrusiverelationships, petrography and geochemistry. Rb-Sr isotopicdata indicate that intrusion of the tholeiites occurred overa period of c. 1000 Ma, during three clearly defined events(viz. c. 2400, 1800, and 1400 Ma). Dykes in the southwesternpart of the Vestfold Block were recrystallized during a lateProterozoic (c. 1000-1100 Ma) high-grade event. Mineral-wholerock Rb-Sr isotopic data show that the terrain was also variablyaffected by an even younger thermal event c. 500 Ma ago whichis correlated with the Pan-African Orogeny. Isotopic, major element and trace element data suggest thatthe tholeiite dyke suites were derived by varying degrees ofpartial melting of compositionally distinct, in some cases ratherheterogeneous subcontinental mantle source regions, combinedwith variations in the extent and nature of crystal fractionation.Extensive crustal contamination does not appear to have playeda significant role in determining compositional trends withinthe different suites, although minor contamination cannot bediscounted. The oldest dykes, a diverse group of high-Mg tholeiites,and the youngest, c. 1400 Ma tholeiites, appear to have beenderived from isotopically similar source regions, which werenevertheless characterized by quite different abundances ofhighly incompatible elements (Pb, Rb, Ba, Th, K, La, and Ce).1800 Ma tholeiites were derived from a more radiogenic mantlesource region, characterized by long-term enrichment in incompatibleelements. Such enrichment is interpreted to be a consequenceof metasomatism of their mantle source region. 2400 Ma high-Mg dykes in Enderby Land have virtually identicalchemical and isotopic compositions to those in the VestfoldBlock, indicating generation from a similar source region; however,1200 Ma tholeiites were apparently derived from a more radiogenicsource region like that of the c. 1800 Ma Vestfold Block dykes.Hence, both Sr isotopic and geochemical data indicate that theancient subcontinental lithospheric mantle beneath Gondwanawas extremely heterogeneous.  相似文献   

3.

High thorium euhedral, twinned and elongate zircons from the felsic part of a mafic dyke located in the Archaean Yilgarn Craton approximately 30 km northeast of Perth and approximately 2 km east of the Darling Fault, have consistent 207 Pb/ 206 Pb ages of 1214 ± 5 Ma. This age is interpreted as the age of dyke emplacement and is identical, within the uncertainties, with other U–Pb dyke ages reported for the southwest Yilgarn Craton. The present result extends the known occurrence of ca 1210 Ma dykes to the western margin of the Yilgarn Craton and confirms earlier conclusions that a major mafic dyke emplacement occurred throughout the southern Yilgarn Craton during a short‐lived magmatic pulse at ca 1210 Ma.  相似文献   

4.
Precise U-Pb zircon ages have been obtained for samples from the Molson dyke swarm and the Fox River sill in NE Manitoba, Canada. The ages determined for the Cross Lake and Cuthbert Lake dykes are 1,883.7 –1.5 +1.7 and 1,883±2 Ma, respectively, and are in excellent agreement with the 1,882.9 –1.4 +1.5 Ma age obtained for the Fox River sill. These results support the contention that the emplacement of the Fox River sill and the Molson Dyke swarm was contemporaneous and also demonstrate the potential for correlating mafic igneous activity in widely spaced localities. The timing of Early Proterozoic mafic magmatism in the western Superior Province appears to be synchronous with igneous activity in other parts of the Circum-Superior Belt and in the Trans Hudson orogen to the west. The emplacement of the Molson dyke swarm at 1,883 Ma indicates a 700 Ma interval of quiescence between the final igneous activity that is recorded in the Archean basement and dyke intrusion. The presence of deformed equivalents of Molson dykes in the Thompson Nickel Belt indicates that the intense deformation in this belt occurred sometime after 1,883 Ma.  相似文献   

5.
There are several geological, geochemical and geophysical evidences, which corroborate reconstruction of Gondwanaland and juxtaposition of India and Antarctica. Petrology of the Precambrian mafic dykes of East Antarctica and Central-East India also support juxtaposition of India and Antarctica. Mafic dykes of different generations are emplaced in the Archaean granite gneisses of these regions. These dykes appear to be an important tool to support juxtaposition of India and Antarctica. Geological and petrological data of the Central-East India Precambrian mafic dykes suggest four episodes of mafic magmatism in the region - three tholeiitic and one noritic (?). Similarly, East Antarctica also comprises four dyke suites, emplaced during three distinct periods. These suites are 2.4 Ga meta-tholeiites, 2.4 Ga high-Mg tholeiites, 1.8 Ga dolerites and 1.2–1.4 Ga dolerites. Geochemical compositions of these mafic dykes are compared and they show good relationships with each other. Similarities in petrological and geochemical characteristics of Precambrian mafic dykes of East Antarctica and Central-East India strongly support juxtaposition of these two continents.  相似文献   

6.
The Archaean gneissic basement of Shillong plateau has been traversed by number of mafic dyke swarms. At least two suites of dykes are identified in the region represented by Proterozoic Khasi greenstone related dolerites and younger Cretaceous dolerite dykes in addition to mafic alkaline dykes. The older Khasi greenstone dolerites are altered and have undergone low-grade metamorphism compared to fresh Cretaceous dykes, which are well exposed in the West Garo Hills region. All the Khasi greenstone dolerites are tholeiite in composition and range from basalt to basaltic andesite in composition and show olivine or quartz normative character. Most of the dykes show continental nature of emplacement with some overlapping oceanic tectonic setting of origin. Petrochemical study suggests that they were derived from picrites that subsequently undergone low-pressure fractionation. Palaeomagnetic study of the older Khasi greenstone related dolerites show a direction of magnetization of Dm=17, Im= +57 (α95= 23.34; K=31.5; N=24) with a palaeolatitude of 29.7°N to the Indian subcontinent that clearly support the Proterozoic dyke/dyke swarm emplacement in the region. The magnetic carrier as inferred from K-T studies is in multi domain (MD) size and cation deficient (CD) domain states.  相似文献   

7.
The mafic dyke swarms are important feature of the Proterozoic and in parts of some stabilised cratonic areas. The early Proterozoic Bundelkhand massif of Central India is extensively intruded by suites of NW-SE and NE-SW trending mafic and ultramafic dykes. These dykes are mostly dolerites with subordinate pyroxenite, or lamproites, moreover, geochemical signatures of the two compositional types are different for the NW-SE and NE-SW trending suites. 40Ar/39Ar age determinations of the dolerite dykes suggest two phases of dyke activity at c.2150Ma and c.2000 Ma in this region. The dolerites are typically tholeiites and quartz normative types represented by Group I and Group II, whilst the ultramafics are komatiite or basaltic komatiite in composition and show an olivine-normative character. Rare earth element (REE) patterns show some enrichment of LREE and exhibit both positive and negative Eu anomalies. Most of the tholeiites display incompatible elements patterns indicative of an enriched mantle source, whilst those of the ultramafics indicate a depleted source. The 2 Ga event is a global event and well documented in various parts of Singhbhum, Aravalli terrane, Tamilnadu, Andhra Pradesh and Kerala regions of Indian Peninsular Shield and many parts of globe. The genesis of these dyke swarms clearly constitutes a major thermal event affecting the Earth's mantle during that period.  相似文献   

8.
吉南地区太古宙基底中发育大量早前寒武纪基性岩墙群,是陆壳伸展的直接证据。对白山市东部天桥太古宙基底出露区内基性岩墙及其围岩进行了锆石U-Pb定年和地球化学分析,以确定该期伸展事件的形成机制及地质意义。天桥地区基性岩墙岩性为斜长角闪岩,侵位于TTG片麻岩中。英云闪长质片麻岩(TN1)中锆石具核-边结构,岩浆核的LA-ICP-MS测年结果为2500±6Ma,指示其形成于新太古代末期。天桥岩墙(TN3)中的锆石内部结构与TN1相同,酸性岩浆核的SHRIMP测年结果为2490±17Ma,与TN1在误差范围内一致,表明这些锆石不是基性岩墙原生锆石,而是岩墙侵位过程中在围岩中捕获的锆石,但根据岩墙仅侵位在太古宙基底中且变质程度高于周围古元古界老岭群,将其侵位年龄大致限制在新太古代末期-古元古代早期。地球化学特征显示,基性岩墙具有低SiO_2、Na_2O、K_2O含量,高CaO、MgO含量,A/CNK=0.56~0.59,属于准铝质的拉斑玄武岩系列岩石,∑REE低、配分曲线平坦,富集LILE(Rb、Ba和K),亏损HFSE(Th、U、Nb和Ta),具有与原始地幔相同的Nb/Ta、Zr/Hf比值及接近地壳的Nb/U、Ta/U比值,指示其岩浆可能来源于地幔且在上升过程中受到地壳混染,形成于板内伸展环境。TTG片麻岩具有中等的SiO_2和MgO含量,高Al_2O_3和Na_2O含量以及低CaO含量,A/CNK=1.00~1.14,属弱过铝质的钙碱性系列岩石,∑REE低、具有右倾的REE配分曲线,轻稀土富集、重稀土亏损,富集LILE(Rb、Ba、K和Sr),强烈亏损HFSE(U、Nb、Ta、Sm和Ti),其岩浆可能来源于变质玄武质岩石和极少量沉积岩的部分熔融,结合邻区TTG的研究成果,认为其形成于与俯冲相关的活动大陆边缘环境。前人研究表明,新太古代晚期板块构造体制可能已经启动,结合我们以往研究,认为新太古代晚期华北克拉通东北部可能发生了弧陆碰撞造山运动,天桥岩墙的侵位标志着新太古代末期至古元古代早期之间华北克拉通东北部进入造山后伸展环境,可能是对新太古代造山运动结束的响应。  相似文献   

9.
To place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest, Bavarian Pfahl zone, SW Bohemian Massif, granitic dykes and their feldspar-phyric massive host rock (so-called palite), zircons were dated by the U–Pb isotope dilution and Pb-evaporation methods. The dated samples comprise two host rocks and four dykes from a K-rich calc-alkaline complex adjoining the SW part of the Bavarian Pfahl shear zone. The palites, which appear to be the oldest magmatic rocks emplaced in the shear zone, yield ages of 334±3, 334.5±1.1 Ma (average 207Pb/206Pb-evaporation zircon ages) and 327–342 Ma (range of U/Pb zircon ages) suggesting a Lower Carboniferous age for the initiation of the Pfahl zone. Absence of inherited older cores in all investigated zircons indicates that incorporation of crustal zircon material has played virtually no role or that the melting temperature was very high. Determination of the dyke emplacement age is complicated by partial Pb-loss in most of the fractions analysed. This Pb-loss can be ascribed to higher U content of the dyke zircons compared to those from host rock. Upper discordia intercept ages of the different dykes range from 322±5 to 331±9 Ma. The dykes are pre- to synkinematic with respect to penetrative regional mylonitisation along the Pfahl zone, and the upper intercept ages provide a maximum age for this tectonic event.  相似文献   

10.
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province (ELIP), southwestern China. Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection, and crustal magmas have rarely been studied. Here we investigate a suite of mafic dykes and I-type granites that yield zircon U-Pb emplacement ages of 259.9 ± 1.2 Ma and 259.3 ± 1.3 Ma, respectively. The εHf(t) values of zircon from the DZ mafic dyke are –0.3 to 9.4, and their corresponding TDM1 values are in the range of 919–523 Ma. The εHf(t) values of zircon from the DSC I-type granite are between –1 and 3, with TDM1 values showing a range of 938–782 Ma. We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time. The δ18O values of zircon from the DSC I-type granite ranges from 4.87‰ to 7.5‰. The field, petrologic, geochemical and isotopic data from our study lead to the following salient findings. (i) The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar. (ii) The DZ mafic dyke and high-Ti basalts have the same source, i.e., the Emeishan mantle plume. The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite, with low degree partial melting (<10%). (iii) The Hf-O isotope data suggest that the DSC I-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material. (iv) The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume, which partially melted the overlying crust, generating the felsic magma.  相似文献   

11.
Archaean gneiss-greenstone relationships are still unresolved in many ancient cratonic terrains although there is growing evidence that most of the late Archaean greenstone assemblages were deposited on older tonalitic crust.We report here well defined basement-cover relationships from a late Archaean greenstone belt in Lapland, north of the Polar Circle. The basal greenstone sequence contains quartzite, schist, komatiitic volcanics and an unusual volcanic conglomerate with well preserved granite pebbles of an older basement. These rocks surround a gneiss dome composed of foliated tonalite which shows a polyphase deformation pattern not seen in the neighbouring greenstones.Zircon fractions of the gneisses plot on two discordia lines and give upper intercept ages with concordia at 3,069±16 Ma and 3,110±17 Ma respectively. One fraction contains metamict zircons with components at least 3,135 Ma old. These are the oldest reliable ages yet reported from the Archaean of the Baltic Shield. Rb-Sr whole-rock dating of the tonalitic gneiss yielded an isochron age of 2,729±122 Ma and an ISr of 0.703±0.001. This is interpreted to reflect a resetting event during which the gneisses may have acquired their present tectonic fabric.Rb-Sr model age calculations yield mantle values for ISr at about 2,950±115 Ma and suggest that the tonalite was intruded into the crust as juvenile material at about 3.1 Ga ago as reflected by the zircon ages. It was subsequently deformed and isotopically reset at about 2.7 Ga ago, prior to greenstone deposition.Comparison with tonalitic gneisses of eastern Karelia displays significant differences and suggests that the Archaean of Finland may contain several generations of pre-greenstone granitoid rocks.  相似文献   

12.
A variety of pre-Variscan granitoids and two Variscan monzogranites occurring in the central and western parts of the Lusatian Granodiorite Complex (LGC), Saxonia were dated by the single zircon evaporation method, complemented by whole rock Nd isotopic data and Rb-Sr whole rock and mineral ages. The virtually undeformed pre-Variscan granitoids constitute a genetically related, mostly peraluminous magmatic suite, ranging in composition from two-mica granodiorite, muscovitebearing biotite quartz diorite (tonalite) and granodiorite to biotite granodiorite and monozogranite. 207Pb/206Pb isotopic ratios derived from the evaporation of single zircons separated from 13 samples representing the above rock types display complex spectra which document significant involvement of late Archaean to late Proterozoic continental crust in the generation of the granitoid melts. Mean 207/Pb/206Pb ages for zircons considered to reflect the time of igneous emplacement range between 542 ± 9 and 587 ± 17 Ma, typical of the Cadomian event elsewhere in Europe, whereas zircon xenocrysts yielded ages between 706 ± 13 and 2932 ± Ma. Detrital zircons from greywackes intruded by the granitoids and found as xenoliths in them provided ages between 1136 ± 22 and 2 574 ± Ma. Rb-Sr whole rock data display good to reasonable linear arrays that, with one exception, correspond to the emplacement ages established for the zircons. Two post-tectonic Variscan monzogranites yielded identical 207/Pb/206Pb single zircon ages of 304 ± 14 Ma and record the end of Variscan granitoid activity in the LGC.The variations in Nd and Sr isotopic data of the Cadomian granitoids are consistent with an origin through the melting and mixing of Archean to early Proterozoic crust with variable proportions of mantle-derived, juvenile magmas. Such mixing may have occurred at the base of an active continental margin or in an intraplate setting through plume-related magmatic underplating. The LGC is interpreted here as a Cadomian (Pan-African) terrane distinct from adjacent Variscan and pre-Variscan domains, the origin of which remains obscure and which probably became involved in Palaeozoic terrane accretion late in the Variscan event.  相似文献   

13.
An intramontane collapse basin developed within the hanging wall above the large-scale extensional Fjord Regional Detachment of NE Greenland in middle to late Devonian times. The continental clastic sediments within the basin are derived locally from Laurentian source rocks, which makes them well suited for a study of the crustal evolution of the source terrain. This is the first integrated in-situ Pb and Hf isotope study to be presented, and zircon data on a selected sandstone from the basin are combined with Sm-Nd whole-rock data on sand/siltstones. Nd whole-rock ages of two samples of sandstones and a siltstone are 2.0-2.1 Ga. Peak frequencies of zircon 207Pb/206Pb ages at 1,764-1,912 Ma, and 176Hf/177Hf values at 0.28142-0.28163 (tDM=2.47 to 2.06) for the sandstone suggest the generation of a considerable volume of juvenile continental crust in the ultimate zircon provenance at 1.9-2.0 Ga. The Hf isotopic compositions of Archaean zircons in the sandstone are distinct from those of the source materials of Proterozoic protocrust at 1.9-2.0 Ga, but zircons with elevated Hf-tDM ages of up to 2.47 Ga can be related to a component of Archaean crust or reworked Archaean material in the ultimate zircon source area. Zircon 207Pb/206Pb ages are also recorded at 1,480-1,572, 1,318 and 1,014 Ma (Grenvillian). The Hf isotope compositions of these zircons are consistent with reworking of the Proterozoic protocrust at these times, with little or no juvenile input. The Proterozoic zircons form two distinct groups defined by 176Yb/177Hf>0.05055 and 176Yb/177Hf<0.03301, and the latter group overlaps with Yb-Hf isotope data on the Archaean zircons. The two groups may represent zircons derived from evolved granites and intermediate to mildly felsic rocks, respectively. The repeated reworking of the continental crust also comprised erosion and deposition of sediments in the Proterozoic (the Krummedal sequence and the Eleonore Bay Supergroup, EBS) and intrusion of Caledonian anatectic granites in the EBS, which both represent provenance components to the Devonian sediments. No discrete Caledonian Pb-Pb zircon ages are recorded, but Caledonian magmatism may be represented by strongly discordant zircons which form arrays with a lower intercept age at ca. 400 Ma and an upper intercept at 1,600-2,000 Ma. One undated zircon records a 176Hf/177Hf ratio of 0.282218, higher than that of the Proterozoic protocrust in Caledonian/late-Caledonian times (380-450 Ma) which may represent a Caledonian mantle contribution.  相似文献   

14.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

15.
《Precambrian Research》2001,105(2-4):115-128
The Aasivik terrane is a ∼1500 km2 complex of gneisses dominated by ∼3600 Ma components, which has been discovered in the Archaean craton of West Greenland, ∼20–50 km south of the Paleoproterozoic Nagssugtoqidian orogen. The Aasivik terrain comprises granulite facies tonalitic to granitic gneisses with bands of mafic granulite, which include disrupted mafic dykes. Four gneiss samples of the Aasivik terrain have given imprecise SHRIMP U–Pb zircon ages of 3550–3780 Ma with strong loss of radiogenic lead and new growth of zircon probably associated with a granulite facies metamorphic event(s) at ∼2800–2700 Ma. To the Southeast, the Aasivik terrane is in tectonic contact with a late Archaean complex of granitic and metapelitic gneisses with apparently randomly distributed mafic and ultramafic units, here named the Ukaleq gneiss complex. Two granitic samples from the Ukaleq gneiss complex have U–Pb zircon ages of 2817 ± 10 and 2820 ± 12 Ma and tzircon εNd values of 2.3–5.4. Given their composition and positive εNd values, they probably represent melts of only slightly older juvenile crust. A reconnaissance SHRIMP U–Pb study of a sample of metasedimentary rock from the Ukaleq gneiss complex found ∼2750–2900 Ma zircons of probable detrital origin and that two or more generations of 2700–2500 Ma metamorphic zircons are present. This gneiss complex is provisionally interpreted as a late Archaean accretionary wedge. A sample of banded granulite facies gneiss from a complex of banded gneisses south of the Aasivik terrain here named the Tasersiaq gneiss complex has yielded two zircon populations of 3212 ± 11 and 3127 ± 12 Ma. Contacts between the three gneiss complexes are mylonites which are locally cut by late-post-kinematic granite veins with SHRIMP U–Pb zircon ages of ∼2700 Ma. The isotopic character and the relationships between the lithologies from the different gneiss complexes suggest the assembly of unrelated rocks along shear zones between 2800 and 2700 Ma. The collage of Archaean gneiss complexes were intruded by A-type granites, here named the Umiatsiaasat granites, at ∼2700 Ma, later than the tectonic intercalation of the gneiss complexes.  相似文献   

16.
A north to northwest trending mafic dyke swarm of gabbronoritic and gabbroic composition makes up a significant part of the Archean basement on the island of Ringvassøy in northern Norway. U–Pb geochronology of zircon and baddeleyite in a gabbronorite provides an age of emplacement of 2403 ± 3 Ma. Metamict zircon in a plagioclase phyric dyke yield data that are discordant but consistent with the age of the gabbronoritic dyke. Titanite indicates a metamorphic overprint at 1768 ± 4 Ma. The two types of dyke show some distinct chemical characteristics. They are both tholeiitic, enriched in LREEs and LILE elements but depleted in HFS elements including Nb. Their Nd isotopic composition yields Nd values of −1.5 to −1.8 for gabbronorites and −0.4 to +1.3 for the plagioclase phyric dykes. The chemical and isotopic constraints are typical of continental basalts.The Ringvassøy mafic dykes correlate broadly with a global Palaeoproterozoic magmatic event that formed extensive bimodal intrusive and extrusive suites in most Archaean cratons, including the northeastern Fennoscandian Shield. In detail, the 2403 ± 3 Ma Ringvassøy dykes postdated most episodes of magmatism at this time. On the regional scale there is a distinct trend from a 2505–2490 Ma suite present in the Kola Peninsula, over a second 2460–2440 Ma suite present both in Kola and further south in Karelia, to the 2403 Ma dykes on Ringvassøy. This variation suggests that the locus of maximum extension and magmatic activity may have been shifting with time.  相似文献   

17.
U–Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152±6 Ma in monazite crystals and 2,155±9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130±7 Ma and 2,128±8 Ma in zircon crystals derived from the Teofilândia tonalite. The emplacement age of the syntectonic Ambrósio dome as indicated by a 2,080±2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar–Ar plateau age of 2,080±5 Ma obtained in hornblendes from an amphibolite and with a U–Pb SHRIMP age of 2,076±10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambrósio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937±16, 3,111±13 and 3,162±13 Ma. Ar–Ar plateau ages of 2,050±4 Ma and 2,054±2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar–Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen.Electronic supplementary material Supplementary material is available for this article at  相似文献   

18.
Two episodes of tholeiite dyke emplacement have been identified in Archaean high-grade metamorphics of the Napier Complex in Enderby Land. Middle Proterozoic Amundsen dykes are typical continental tholeiites and most of the chemical variation in individual suites can be explained in terms of different degrees of partial melting and low-pressure crystal fractionation. Group I Amundsen tholeiites were derived from a relatively homogeneous source region 1,190±200 m.y. ago, whereas that of the group II Amundsen tholeiites was chemically and isotopically heterogeneous. Group II dykes have various degrees of enrichment in incompatible elements, and commonly show normalised trace element abundance patterns with negative Nb anomalies. These features imply variable metasomatism of the source region by a volatile-rich fluid phase (rather than a melt of any observed igneous composition) enriched in K, Rb, Ba, Th, and possibly La and Ce.Early Proterozoic (2,350±48 m.y.) tholeiites were emplaced at considerable depths in the crust during the waning stages of granulite-facies metamorphism and include a high-Mg suite of possible komatiitic affinity, ranging in composition from hypersthene-rich tholeiite (norite) to quartz-rich tholeiite. They tend to have higher ratios of highly to moderately incompatible elements (e.g., K/Zr, K/Ce), and larger Nb anomalies (i.e., higher K/Nb) compared with middle Proterozoic tholeiites, suggesting derivation from more enriched source regions. Isotopic data are not compatible with significant crustal contamination, but constrain source metasomatism to a time immediately before emplacement. Metasomatism of the source region of the much younger group I tholeiites may have been contemporaneous with that of the high-Mg suite.  相似文献   

19.
Late-stage Pan-African granitoids, including monzogranite, syenogranite and alkali granite, were collected from four separate localities in Sinai. They were selected to represent both the calc-alkaline and alkaline suites that have been viewed as forming separate magmatic episodes in the Eastern Desert of Egypt, with the transition to alkali granite at ~ 610 Ma taken to mark the onset of crustal extension. Although intrusive relations were observed in the field, the emplacement ages of the granitoids cannot be distinguished within analytical uncertainty and they all formed within a restricted time span from 579 to 594 Ma. This indicates that the two suites are coeval and that some calc-alkaline rocks were also likely generated during the late extensional phase. These ages are identical to those recently obtained from similar rocks in the North-Eastern Desert, confirming that Sinai is the northern extension of the Eastern Desert Pan-African terrane of Egypt. Rare inherited zircons with ages of ~ 1790 and ~ 740 Ma are present in syenogranite from northeastern Sinai and indicate that older material is present within the basement. A few zircons record younger ages and, although some may reflect later disturbance of the main zircon population, those with ages of ~ 570 and 535 Ma probably reflect thermal events associated with the extensive emplacement of mafic and felsic dykes in both northeastern and southern Sinai.  相似文献   

20.
Zircons from mafic and felsic volcanic rocks in the type area of the Warrawoona Group, the basal Archaean greenstone succession of the eastern Pilbara Block, have been dated precisely using the ion-microprobe SHRIMP. The results allow two alternative time-frames for the duration of the Warrawoona Group, dependent on how the dated zircons are considered to relate to the volcanic rocks. Our favoured interpretation requires a hiatus of 135±5 Ma between the Duffer Formation at 3.46 Ga and the overlying felsic volcanic rocks of the Wyman Formation, and a hydrothermal or later magmatic origin for zircons of age 3.33 Ga within one Duffer Formation sample and the underlying metabasalts. The alternative time-frame requires a short time for deposition of the entire Group, less than 15 Ma at 3.33 Ga, and a xenocrystic origin for the 3.46 Ga zircons of the Duffer Formation. Outside the type area of the Warrawoona Group, the age of an intrusive granodiorite requires that greenstones be older than 3.43 Ga and the Group formed over an interval of > 120 Ma.Visibly different zircons within one of the Duffer Formation samples were found to be Palaeozoic in age and presumably constitute hydrothermal growth of new zircon within the rock at low temperature. Similar zircons were found within samples from other rock units but with a spread of Proterozoic ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号