首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
This paper reveals the temporal and spatial variations of stable isotope in precipitation of the Yarlung Zangbo River Basin based on the variations of δ^18O in precipitation at four stations (Lhaze, Nugesha, Yangcun and Nuxia) in 2005. The results show that δ^18O of precipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ^18O occurs in spring prior to monsoon precipitation, and the lower value occurs during monsoon precipitation. From the spatial variations, with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley, δ^18O of precipitation is gradually depleted. Thus, δ^18O of precipitation decreases gradually from the downstream to the upstream, and the lapse rate of δ^18O in precipitation is approximately 0.34‰/100m and 0.7%J‰/100km for the two reasons. During monsoon precipitation, spatial variation of δ^18O in precipitation is dominated by the amount effect in the large scale synoptic condition.  相似文献   

2.
This paper reveals the temporal and spatial variations of stable isotope in precipita-tion of the Yarlung Zangbo River Basin based on the variations of δ18O in precipitation at four stations (Lhaze,Nugesha,Yangcun and Nuxia) in 2005. The results show that δ18O of pre-cipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ18O occurs in spring prior to monsoon precipitation,and the lower value occurs during monsoon precipitation. From the spatial variations,with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley,18O of precipitation is gradually depleted. Thus,δ18O of precipitation decreases gradually from the downstream to the upstream,and the lapse rate of δ18O in precipitation is approximately 0.34‰/100m and 0.7‰/100km for the two reasons. During monsoon precipitation,spatial variation of δ18O in precipitation is dominated by the amount effect in the large scale synoptic condition.  相似文献   

3.
Seasonal variation of stable isotopes in precipitation of Kathmandu Valley on the southern slope of Himalaya was carried out to understand the controlling mechanism of amount and temperature effect on the basis of one year stable isotope data from 2010 to 2011. Highly depleted isotope values in major rainy period are obtained just after the onset of precipitation in summer, which accounts for "amount effect" due to saturation isotopic compositions in high moisture condition, whereas, the higher values in winter are indicative to regional vapors (temperature effect) recycling of various sources. An abrupt depletion of isotope values in mid-June, indicates the onset date of monsoon precipitation, by the replacement of winter air mass with southern monsoon. Thus, precipitation isotopes are a tool revealing the onset date of summer monsoon and temporal features of variability, in local and regional monsoons precipitations. A comparison of long term monthly values of δ 18 O, temperature, and precipitation with GNIP δ 18 O data shows the temporal variations of stable isotopes are mostly controlled by amount and temperature effects. During summer monsoon, the amount effects are stronger for high values of precipitation (R=0.7) and altitude effect appears for low moisture in late rainy season, thus from December to June (winter to pre-monsoon) the controlling features of isotopes remains under the temperature effect. A temporal rate of temperature effect is derived as 0.04‰ per year which indicates a dry signal of atmospheric condition and a temperature relation δ 18 O=(0.371±0.08)T+(0.156±0.05) is obtained from this analysis. The meteoric water lines of Kathmandu before and after monsoon onset of 2011, are found as δD=(4.36±0.3)δ 18 O+(15.66±1.2) and δD=(6.91±0.2)δ 18 O (7.92±2.26) from lab samples result, and δD=9.2δ 18 O+11.725 and δD=8.53δ 18 O+16.65 from GNIP data, which lacks the consistency both for slopes and intercepts values for the study period. The mean lapse rate values of δ 18 O and δD from GNIP data are obtained as 0.002‰/m and 0.015 ‰/m, which indicate the altitudinal effects in regional precipitation of the southern slope of Himalayas. This study estimates new stable isotopes data in recent precipitation using simple methodology which can be important for regional precipitation monitoring systems, environmental change and paleo-climatic studies.  相似文献   

4.
Seasonal variation of stable isotopes in precipitation of Kathmandu Valley on the southern slope of Himalaya was carried out to understand the controlling mechanism of amount and temperature effect on the basis of one year stable isotope data from 2010 to 2011. Highly depleted isotope values in major rainy period are obtained just after the onset of precipitation in summer, which accounts for "amount effect" due to saturation isotopic compositions in high moisture condition, whereas, the higher values in winter are indicative to regional vapors (temperature effect) recycling of various sources. An abrupt depletion of isotope values in mid- June, indicates the onset date of monsoon precipitation, by the replacement of winter air mass with southern monsoon. Thus, precipitation isotopes are a tool revealing the onset date of summer monsoon and temporal features of variability, in local and regional monsoons precipitations. A comparison of long term monthly values of δ18O, temperature, and precipitation with GNIP δ18O data shows the temporal variations of stable isotopes are mostly controlled by amount and temperature effects. During summer monsoon, the amount effects are stronger for high values of precipitation (R=0.7) and altitude effect appears for low moisture in late rainy season, thus from December to June (winter to pre-monsoon) the controlling features of isotopes remains under the temperature effect. A temporal rate of temperature effect is derived as 0.04‰ per year which indicates a dry signal of atmospheric condition and a temperature relation δ18O=(0.371±0.08)T+(0.156±0.05) is obtained from this analysis. The meteoric water lines of Kathmandu before and after monsoon onset of 2011, are found as δD=(4.36±0.3)δ18O+(15.66±1.2) and δD=(6.91±0.2)δ18O?(7.92±2.26) from lab samples result, and δD=9.2δ18O+11.725 and δD=8.53δ18O+16.65 from GNIP data, which lacks the consistency both for slopes and intercepts values for the study period. The mean lapse rate values of δ18O and δD from GNIP data are obtained as ?0.002‰/m and ?0.015 ‰/m, which indicate the altitudinal effects in regional precipitation of the southern slope of Himalayas. This study estimates new stable isotopes data in recent precipitation using simple methodology which can be important for regional precipitation monitoring systems, environmental change and paleo-climatic studies.  相似文献   

5.
Knowledge of moisture sources is of great significance for understanding climatic change and landscape evolution in desert environments. In this paper, we aim to clarify moisture origins for the Alashan(Alxa) Sand Seas(ALSS) in western Inner Mongolia and their transport pathways during the Last Glacial Maximum(LGM) and the mid-Holocene using modern analogues and paleoclimatic simulations. Precipitation data for the period 1959–2015 from meteorological stations in the study area and wind and specific humidity data from the European Center for Medium-Range Weather Forecasts(ECMWF) daily reanalysis were adopted to determine the moisture sources of summer precipitation in the ALSS. In addition paleoclimate simulations under PMIP3/CMIP5 protocols were used to detect the atmospheric circulation and precipitation at 21 ka BP and 6 ka BP over the ALSS. We also reviewed paleoclimate records from the ALSS to acquire a semi-quantitative reconstruction of the moisture history during the late Pleistocene and Holocene. Our results suggest that the summer monsoon transported water vapor from the Indian Ocean and the South China Sea to the ALSS during July and August, causing increased precipitation. The dominant moisture source was from the southwest monsoon, while the East Asian summer monsoon also partly contributed to precipitation in the ALSS. The increased humidity during the period 8.2–4.2 ka BP in the ALSS, as derived from both climate simulation outputs and sedimentary records, was caused by monsoons according to the outputs of simulations. At 21 ka BP, the moisture sources of the ALSS were greatly associated with the prevailing westerlies.  相似文献   

6.
乌鲁木齐河流域不同水体中的氧稳定同位素   总被引:1,自引:0,他引:1  
The variations of the stable oxygen isotope in different water mediums in Urumqi River Basin, China, are analyzed. The stable oxygen isotope in precipitation has marked temperature effect either under synoptic or seasonal scale at the head of Urumqi River. The linear regression equations of δ^18O against temperature are δ^18O=-0.94T-12.38 and δ^18O=1.29T-13.05 under the two time scales, respectively. The relatively large δ^18O/temperature slopes show the strong sensitivity of δ^18O in precipitation to temperature variation at the head of Urumqi River. According to the analyses on the δ^18O in precipitation sampled at three stations with different altitudes along Urumqi River, altitude effect is notable in the drainage basin. The δ^18O/altitude gradients have distinct differences: the gradient from Urumqi to Yuejinqiao is merely -0.054‰/hm, but -0.192‰/hm from Yuejinqiao to Daxigou, almost increasing by 2.6 times over the former. No altitude effect is found in surface firn the east branch of Glacier No. 1 at the head of Urumqi River, showing that precipitation in the glacier is from the cloud cluster with the same condensation level. Influenced by strong ablation and evaporation, the δ^18O in surface firn increases with increasing altitude sometimes. Survey has found that the δ^18O in meltwater at the terminus of Glacier No. 1 and in stream water at Total Control have the similar change trend with the former all smaller than the latter, which displays the different runoff recharges, and all mirror the regime of temperature in the same term basicallv.  相似文献   

7.
Using the isotope enabled ECHAM4, GISS E and HadCM3 GCMs, the spatial distribution of mean δ18O in precipitation, mean seasonality and the correlations of δ18O in precipitation with temperature and precipitation amount are analyzed. The simulated results are in agreement with stable isotopic features by GNIP observations. Over East Asia, the distribution of δ18O in precipitation is of marked latitude effect and altitude effect. The latitude effect is covered by the continent effect in some regions. The largest seasonality of δ18O in precipitation appears in eastern Siberia controlled by cold high pressure, and the smallest seasonality is in the western Pacific controlled by the subtropical high. Relatively weak seasonality appears in middle latitudes where oceanic and continental air masses frequently interact. However, three GCMs show significant systematic lower δ18O for inland mid-high latitudes than GNIP data, which is related to the used isotopic scheme in GCMs. Temperature effect occurs mainly in inland mid-high latitudes. The higher the latitude and the closer the distance to inland is, then the stronger the temperature effect. Amount effect occurs mainly in low-mid latitudes and monsoon areas, with the strongest effect in low-latitude coasts or islands. However, three GCMs provide virtually non-existent amount effect in arid regions over Central Asia. The enrichment action of stable isotopes in falling raindrops under a cloud base, which is enlarged by these modes, is responsible for such a result. A significant difference between spatial distributions of δ18O statistics by GCMs simulations and by GNIP observations is that the standard deviation of GCMs statistics is greater than that of GNIP statistics. In contrast, by comparing parallel time series at a single station, the standard deviations of GCMs simulations are smaller than that of GNIP observations.  相似文献   

8.
The most important climatological feature of the South Asian region is the occurrence of monsoons.With increasing concerns about climate change,the need to understand the nature and variability of such climatic conditions and to evaluate possible future changes becomes increasingly important.This paper deals with long-term above and below normal monsoon precipitation causing prolong meteorological droughts and floods in India.Five regions across India comprising variable climates were selected for the study.Apart from long-term trends for individual regions,long-term trends were also calculated for the Indian region as a whole.The results show that intra-region variability for monsoon precipitation is large and there are increasing numbers of meteorological summer droughts.Meteorological monsoon floods were found to have negative long-term trends everywhere except in the peninsular Indian region.The results overall suggest generic conclusions concerning the region-wide long-term trend of severity of monsoon droughts and floods in India and their spatial variability.  相似文献   

9.
西北干旱地区大气降水δ18O的特征及水汽来源   总被引:7,自引:1,他引:6  
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation (CHNIP). During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O. The established local meteoric water line δD=7.42 δ18O+1.38, based on the 95 ob-tained monthly composite samples, could be treated as isotopic input function across the region. The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions. The monthly δ18O values were characterized by a positive correlation with surface air temperature (δ18O (‰) =0.33 T (℃)-13.12). The amount effect visualized during summer period (δ18O (‰) = -0.04P (mm)-3.44) though not appeared at a whole yearly-scale. Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China. The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops. Furthermore, the raindrop suffered a re-evaporation during falling processes, and the pre-cipitation vapor might have been mixed with a quantity of local recycled water vapor. Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data. The estab-lished δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.  相似文献   

10.
Aridity index reflects the exchanges of energy and water between the land surface and the atmosphere, and its variation can be used to forecast drought and flood patterns, which makes it of great significance for agricultural production. The ratio of potential evapotranspiration and precipitation is applied to analyse the spatial and temporal distributions of the aridity index in the Belt and Road region under the 1.5℃ and 2.0℃ global warming scenarios on the basis of outputs from four downscaled global climate models. The results show that:(1) Under the 1.5℃ warming scenario, the area-averaged aridity index will be similar to that in 1986–2005(around 1.58), but the changes vary spatially. The aridity index will increase by more than 5% in Central-Eastern Europe, north of West Asia, the monsoon region of East Asia and northwest of Southeast Asia, while it is projected to decrease obviously in the southeast of West Asia. Regarding the seasonal scale, spring and winter will be more arid in South Asia, and the monsoon region of East Asia will be slightly drier in summer compared with the reference period. While, West Asia will be wetter in all seasons, except winter.(2) Relative to 1986–2005, both areal averaged annual potential evapotranspiration and precipitation are projected to increase, and the spatial variation of aridity index will become more obvious as well at the 2.0℃ warming level. Although the aridity index over the entire region will be maintained at approximately 1.57 as that in 1.5℃, the index in Central-Eastern Europe, north of West Asia and Central Asia will grow rapidly at a rate of more than 20%, while that in West Siberia, northwest of China, the southern part of South Asia and West Asia will show a declining trend. At the seasonal scale, the increase of the aridity index in Central-Eastern Europe, Central Asia, West Asia, South Asia and the northern part of Siberia in winter will be obvious, and the monsoon region in East Asia will be drier in both summer and autumn.(3) Under the scenario of an additional 0.5℃ increase in global temperature from 1.5℃ to 2.0℃, the aridity index will increase significantly in Central Asia and north of West Asia but decrease in Southeast Asia and Central Siberia. Seasonally, the aridity index in the Belt and Road region will slightly increase in all other seasons except spring. Central Asia will become drier annually at a rate of more than 20%. The aridity index in South Asia will increase in spring and winter, and that in East Asia will increase in autumn and winter.(4) To changes of the aridity index, the attribution of precipitation and potential evapotranspiration will vary regionally. Precipitation will be the major influencing factor over southern West Asia, southern South Asia, Central-Eastern Siberia, the non-monsoon region of East Asia and the border between West Asia and Central Asia, while potential evapotranspiration will exert greater effects over Central-Eastern Europe, West Siberia, Central Asia and the monsoon region of East Asia.  相似文献   

11.
中国南方冬季异常低温和降水事件   总被引:6,自引:1,他引:5  
This paper analyzed the anomalous low-temperature events and the anomalous rain-abundant events in January since 1951 and winter since 1880 for southern China.The anomalous events are defined using ±1σ thresholds.Twelve cold Januaries are identified where temperature anomaly below-1σ,and ten wet Januaries are identified where precipitation anomaly above +1σ.Among these events there are three patterns of cold-wet Januaries,namely 1969,1993 and 2008.The NCEP/NCAR reanalysis data are used to check the atmospheric circulation changes in association with the anomalous temperature and precipitation events.The results show that the strong Siberian High(SBH),East Asian trough(EAT) and East Asian jet stream(EAJS) are favorable conditions for low-temperature in southern China.While the anomalous southerly flow at 850 hPa,the weak EAT at 500 hPa,the strong Middle East jet stream(MEJS) and the weaker EAJS are found to accompany a wetter southern China.The cold-wet winters in southern China,such as...更多 January of 2008,are mainly related to a stronger SBH,and the circulation in the middle to upper troposphere is precipitation-favorable.In wet winters,the water vapor below 500 hPa is mainly transported by the anomalous southwesterly flow and the anomalous southern flow over the Indo-China Peninsula and the South China Sea area.The correlation coefficients of MEJS,EAMW(East Asian meridional wind) and EU(Eurasian pattern) to southern China precipitation in January are +0.65,-0.59 and-0.48 respectively,and the correlations for high-pass filtered data are +0.63,-0.55 and-0.44 respectively,the significant level is all at 99%.MEJS,EAMW and EU together can explain 49.4% variance in January precipitation.Explained variance for January and winter temperature by SBH,EU,WP(west Pacific pattern) and AO(Arctic Oscillation) are 47.2% and 51.5%,respectively.There is more precipitation in southern China during El Nio winters,and less precipitation during La Nia winters.And there is no clear evidence that the occurrence of anomalous temperature events in winter over southern China is closely linked to ENSO events.  相似文献   

12.
《地理学报》2009,30(4):471-488
This paper analyzed the anomalous low-temperature events and the anomalous rain-abundant events in January since 1951 and winter since 1880 for southern China.The anomalous events are defined using ±1σ thresholds.Twelve cold Januaries are identified where temperature anomaly below-1σ,and ten wet Januaries are identified where precipitation anomaly above +1σ.Among these events there are three patterns of cold-wet Januaries,namely 1969,1993 and 2008.The NCEP/NCAR reanalysis data are used to check the atmospheric circulation changes in association with the anomalous temperature and precipitation events.The results show that the strong Siberian High(SBH),East Asian trough(EAT) and East Asian jet stream(EAJS) are favorable conditions for low-temperature in southern China.While the anomalous southerly flow at 850 hPa,the weak EAT at 500 hPa,the strong Middle East jet stream(MEJS) and the weaker EAJS are found to accompany a wetter southern China.The cold-wet winters in southern China,such as...更多 January of 2008,are mainly related to a stronger SBH,and the circulation in the middle to upper troposphere is precipitation-favorable.In wet winters,the water vapor below 500 hPa is mainly transported by the anomalous southwesterly flow and the anomalous southern flow over the Indo-China Peninsula and the South China Sea area.The correlation coefficients of MEJS,EAMW(East Asian meridional wind) and EU(Eurasian pattern) to southern China precipitation in January are +0.65,-0.59 and-0.48 respectively,and the correlations for high-pass filtered data are +0.63,-0.55 and-0.44 respectively,the significant level is all at 99%.MEJS,EAMW and EU together can explain 49.4% variance in January precipitation.Explained variance for January and winter temperature by SBH,EU,WP(west Pacific pattern) and AO(Arctic Oscillation) are 47.2% and 51.5%,respectively.There is more precipitation in southern China during El Nio winters,and less precipitation during La Nia winters.And there is no clear evidence that the occurrence of anomalous temperature events in winter over southern China is closely linked to ENSO events.  相似文献   

13.
During the summers of 1999 and 2000, sampling was carried out in Mt. Yulong, for the investigation of the spatial distribution of oxygen stable isotope in the atmospheric glacial hydro system and similar results obtained in the two years have confirmed our conclusion. There is an evident negative correlation between stable isotopic composition and air temperature precipitation amount, suggesting that there exits a strong "precipitation amount effect" in this typical monsoon temperate glacier region. There are marked differences between the δ 18 O values in winter accumulated snow, glacial meltwater, summer precipitation and glacier feeding stream. Under the control of varied climatic conditions, spatial and temporal variations of above glacial hydro mediums are apparent. Isotopic depletion or fractionation and ionic changes had occurred during the phase change and transformation processes of snow ice, ice meltwater, flowing of runoff and contact with bedrock. The variation of stable isotope in a runoff can reflect not only its own flowing process but also its different feeding sources.  相似文献   

14.
From 2008 to 2010,a total of 15 snow pit samples were collected from 13 mountain glaciers in western China.In this study these samples are used to determine the spatial distribution of insoluble particle concentrations and dust deposition fluxes in western China.The results show that the mass concentrations of insoluble particles exhibit high spatial variation and strongly decrease(by a factor of approximately 50) from the north(Tienshan Mountains) to the south(Himalayas).However,the insoluble particles concentrations at the southeastern Tibetan Plateau(TP) sites are also high and approximately 30 times greater than those in the Himalayas.The spatial distribution of the dust flux is similar to that of the mass concentrations;however,the high dust deposition rate in the southeastern TP is very significant as a result of the extensive snow accumulation(precipitation) in this region.The average sizes of the insoluble particles at each site generally exhibit bimodal distributions with peaks at approximately 5 μm and 10 μm,which can be explained as resulting from dust emissions from regional and local sources,respectively.The enrichment factors for most of the elements measured in insoluble particles are less than 10 at all of the study sites,indicating primarily crustal sources.However,the sites located in the peripheral mountains of western China,such as the Tienshan Mountains and the Himalayas,are characterized by high levels of certain enrichment elements(e.g.,Cu,Zn,Cr,and V) indicative of sources related to the long-range transport of pollutants.  相似文献   

15.
Trends of annual and monthly temperature, precipitation, potential evapotranspi- ration and aridity index were analyzed to understand climate change during the period 1971–2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56–Penmen–Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and mini- mum temperatures, solar radiation, relative humidity and wind speed. Results indicate gen- erally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly poten- tial evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simulta- neous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.  相似文献   

16.
The precipitation regime of the low latitude highlands of Yunnan in Southwest China is subject to the interactions between the East Asian Summer Monsoon and the Indian Summer Monsoon, and the influence of surface orography. An understanding of changes in its spatial and temporal patterns is urgently needed for climate change projection, hydrologi- cal impact modelling, and regional and downstream water resources management. Using daily precipitation records of the low latitude highlands over the last several decades (1950s-2007), a time series of precipitation indices, including annual precipitation, number of rainy days, mean annual precipitation intensity, the dates of the onset of the rainy season, degree and period of precipitation seasonal concentration, the highest 1-day, 3-day and 7-day precipitation, and precipitation amount and number of rainy days for precipitation above dif- ferent intensities (such as 〉~10 mm, 〉~25 mm and 〉~50 mm of daily precipitation), was con- structed. The Trend-Free Pre-Whitening Mann-Kendall trend test was then used to detect trends of the time series data. The results show that there is no significant trend in annual precipitation and strong seasonal differentiation of precipitation trends across the low latitude highlands. Springs and winters are getting wetter and summers are getting drier. Autumns are getting drier in the east and wetter in the west. As a consequence, the seasonality of pre- cipitation is weakening slightly. The beginning of the rainy season and the period of the highest precipitation tend to be earlier. In the meantime, the low latitude highlands has also witnessed less rainy days, more intense precipitation, slightly longer moderate and heavy precipitation events, and more frequent extreme precipitation events. Additionally, regional differentiation of precipitation trends is remarkable. These variations may be associated with weakening of the East Asian summer monsoon and strengthening of the South Asian summer monsoon, as well as the "corridor-barrier" effects of special mountainous terrain. However, the physical mechanisms involved still need to be uncovered in the future.  相似文献   

17.
Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850–2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.  相似文献   

18.
The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the precipitation. Based on 461 event-based precipitation samples collected from 12 weather stations in the Qilian Mountains and the Hexi Corridor from May to August of 2013, our results indicated that sub-cloud evaporation has a great influence on the δ18O of precipitation, especially in small-amount precipitation events. In May, June, July, and August the δ18O composition was enriched by 35%, 26%, 39%, and 41%, respectively, from the cloud base to the ground. This influence clearly strengthened with temperature rise, from the Qilian Mountains to the Hexi Corridor. When falling raindrops are evaporated by 1.0% in the Qilian Mountains and the Hexi Corridor, the composition of δ18O would be enriched by 1.2% and 2.6%, respectively. Temperature dominated the sub-cloud evaporation in the Qilian Mountains, whereas relative humidity controlled it in the Hexi Corridor. These results provide new proofs of the evolutional process of stable isotopes in precipitation in arid regions.  相似文献   

19.
By using the observed monthly mean temperature and humidity datasets of 14 radiosonde stations and monthly mean precipitation data of 83 surface stations from 1979 to 2008 over the Tibetan Plateau(TP),the relationship between the atmospheric water vapor(WV) and precipitation in summer and the precipitation conversion efficiency(PEC) over the TP are analyzed.The results are obtained as follows.(1) The summer WV decreases with increasing altitude,with the largest value area observed in the northeastern part of the TP,and the second largest value area in the southeastern part of the TP,while the northwestern part is the lowest value area.The summer precipitation decreases from southeast to northwest.(2) The summer WV presents two main patterns based on the EOF analysis:the whole region consistent-type and the north-south opposite-type.The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains.(3) The summer precipitation is more(less) in the southern(northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south,and vice versa.(4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer,which is obviously bigger in the southern TP than that in the northern TP.  相似文献   

20.
Zhang  Qinghua  Luo  Zhuanxi  Lu  Wen  Harald  Zepp  Zhao  Yufeng  Tang  Jialiang 《地理学报(英文版)》2020,30(6):935-948
Despite the increasing depletion of the groundwater at the Zhangjiakou aquifer system in the northwest of Beijing-Tianjin-Hebei region, little information is available on the hydrological process of groundwater in this region. In this study, we utilized water isotopes composition(δ~(18) O, δD and ~3 H) of groundwater, river and precipitation to identify the characteristics of hydrochemistry, groundwater age and recharge rates in different watersheds of the Zhangjiakou area. Results showed that the river water and groundwater could be characterized as HCO_3-Mg·Na, HCO_3·Cl-Na and HCO_3-Mg·Na, HCO_3·Cl-Na, HCO_3·Cl-Na·Mg types, respectively. The δD and δ~(18) O values in precipitation were linearly correlated, which is similar to the Global Meteorological Water Line(GMWL). Furthermore, the decreasing values of the δD and δ~(18) O from precipitation to surface water and groundwater indicate that groundwater is mainly recharged by atmospheric precipitation. In addition, the variation of 3 H concentration with depth suggests that groundwater shallower than around 100 m is generally modern water. In contrast, groundwater deeper around 100 m is a mixture of modern and old waters, which has longer residence times. Groundwater showed a relatively low tritium concentration in the confined aquifers, indicating the groundwater recharged might be relatively old groundwater of over 60 years. The flow velocity of the groundwater in the study area varied from 1.10 to 2.26 m/a, and the recharge rates ranged from 0.034 to 0.203 m/a. The obtained findings provide important insights into understanding the groundwater recharge sources and hydrochemistry in the Zhangjiakou area, in turn developing a sustainable groundwater management plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号