首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
针对高动态环境会使接收机接收信号载频上产生很大的多普勒频移及其变化率,普通的GPS载波跟踪环无法保证可靠的跟踪等问题,通过综合分析传统的二阶叉积自动频率控制环(CPAFC)辅助三阶锁相环(PLL)的高动态载波跟踪环路,以及卡尔曼滤波器在动态跟踪中的优势与劣势,该文设计了一种基于卡尔曼滤波的二阶CPAFC辅助三阶PLL的GPS高动态载波跟踪环路。通过仿真分析证明,新的环路能更好地适应动态性,整体跟踪性能更好;并且在信噪比较低的情况下,环路优势更明显。  相似文献   

2.
针对高动态环境下普通GPS接收机跟踪环路容易失锁的问题,考虑到锁频环动态性能好、锁相环跟踪精度高的特点,实现了二阶锁频环辅助三阶锁相环的载波跟踪环(FPLL)。根据FPLL结构原理和误差分析理论,提出了一种FPLL环路的码相位和载波相位精度分析方法。借助GPS软件接收机平台,在Matlab环境下仿真实现了FPLL载波跟踪环,并利用Spirent GSS7700仿真器采集高动态GPS模拟信号对FPLL环路进行了测试。测试结果和精度分析表明,在导航信号的载噪比为40dB-Hz,加速度为26g,加加速度为9g/s的条件下,该高动态跟踪环路能够达到码相位1.31m(1σ),载波相位为4.24×10-3 m/s(1σ)的跟踪精度。  相似文献   

3.
详细推导了惯性测量单元(IMU)精度与全球导航卫星系统(GNSS)接收机信号跟踪环路误差之间的数学模型,分析了IMU辅助的高动态载波跟踪环路误差精度,比较了不同精度IMU辅助GNSS信号捕获性能,证明了分析推导的正确性和合理性,指出了惯性卫星超紧组合导航系统对IMU的精度要求。  相似文献   

4.
针对高动态场景,单独的码环路很难实现跟踪,由于高动态载波跟踪的算法很成熟,通常应用载波跟踪结果对码环路进行辅助,针对窄体制信号,这种方法可以帮助消除码环的动态误差,但对宽体制信号来说,辅助力度减小。从高动态宽带信号码跟踪误差门限以及跟踪精度入手,分析了单独码跟踪算法的易失锁性,理论和仿真验证应用高动态载波跟踪结果辅助码跟踪算法的有效性,且具有高的跟踪精度。这为导航接收机的跟踪算法提供了理论依据。  相似文献   

5.
为满足组合导航系统在高动态环境下的性能要求,设计基于矢量跟踪的GNSS/SINS相干深组合导航方法。利用矢量跟踪环路将所有可视卫星的跟踪和导航解算融为一体,增强通道间的辅助;高动态对载波跟踪影响更大,在通道预滤波中将码环载波环分别用独立的滤波器处理,组合滤波中采用通道间差分降低滤波状态维数,提高计算效率。引入惯导的加速度辅助本地信号参数预测,较精确地测量卫星视线方向的加速度,减小接收机在高动态时段的剩余动态,提高本地信号参数的预测精度。基于矢量跟踪软件接收机搭建相干深组合仿真系统,实验表明该方法在高动态等环境下能提高信号跟踪性能,改善系统的精度、可靠性。   相似文献   

6.
高性能稳健性的GPS卫星接收机仍然是当前研究和发展的热点。在高动态条件下,GNSS接收机设计总是涉及到跟踪动态性能所要求的环路带宽和噪声所要求的环路带宽一对矛盾体。以微惯性测量单元(MIMU)辅助的GPS接收机为实例,设计了MIMU辅助的GPS接收机搜索算法和跟踪算法,同时为减少GPS接收机对惯性器件的性能的依赖,设计了基于MIMU辅助的最优GPS接收机的环路带宽。通过仿真和车载试验对所设计的方法进行验证,仿真和试验结果表明,MIMU辅助的GPS接收机动态性能取决于MIMU的性能指标和环路的带宽,而抗干扰性能至少有13 dB的提高;跑车试验中,商用GPS接收机和研制的GPS接收机精度大体相当。同时系统还能够提供姿态角信息。  相似文献   

7.
为了满足高动态用户及强干扰条件下的应用需求,提出了一种基于卫星信号矢量跟踪的SINS/GPS深组合导航方法,设计了基于FPGA硬件平台的实施方案。利用组合卡尔曼滤波器反馈回路取代了传统接收机中独立、并行的跟踪环路,能够同时完成所有可视卫星信号的跟踪和导航信息处理;通过矢量跟踪算法对所有可视卫星信号进行集中处理,能够增强跟踪通道对信号载噪比变化的适应能力,从而提高接收机在强干扰或信号中断条件下的跟踪性能;根据SINS导航参数和星历信息推测GPS伪码相位和多普勒频移等参数,用以辅助卫星信号的捕获和跟踪,能够大大缩短接收机的搜索捕获时间,并增强接收机在高动态条件下的跟踪性能。基于矢量跟踪的深组合方法不仅在GPS信号短暂中断期间,能够保证系统的导航精度和可靠性,而且在强干扰环境中能够维持较好的伪码相位和载波频率跟踪性能。  相似文献   

8.
针对正交复用二进制偏移载波信号(QMBOC)跟踪时存在的多零点模糊问题,首先比较了模糊消除的常用方法,并对双环跟踪方法进行了理论分析,在此基础上利用二进制偏移载波信号(BOC(1,1))的双环跟踪环路对QMBOC信号进行了跟踪,同时将副载波联合环路纳入双环跟踪方法作研究对比.仿真结果表明,在载噪比高于24 dB·Hz的环境下,BOC(1,1)的双环跟踪误差趋近于0,小于联合跟踪方法下的跟踪误差,实现了良好的处理效果.   相似文献   

9.
分析了射频与基带时钟不同源对载波相位测量的影响,构建了由晶振各类误差源引起的载波环跟踪误差模型。分析与实验结果表明,时钟不同源会导致载波相位测量出错,晶振引起的载波环测量误差随环路噪声带宽增大而减小,减小晶振的h系数和g灵敏度可提高测量精度。选用单一稳定度高、g灵敏度小的晶振作为GNSS接收机时钟,可改善载波相位精度。  相似文献   

10.
多径的存在会给全球导航卫星系统的接收机带来较大的定位误差。因此,高精度的接收机须对多径信号进行抑制。针对目前常用的多径抑制方法的优缺点,提出了一种基于多门延迟和曲线拟合的多径抑制方法。该方法通过多门延迟来重塑伪码的自相关函数,用于找到直射信号的伪码真实位置和接收机码跟踪环路鉴别结果之间的偏差,进一步通过曲线拟合方法更加精确地计算出该偏差,最后将该偏差通过开环方法补偿给伪距计算,使得接收机在不改变环路跟踪性能和抗动态干扰性能的前提下实现定位性能的提升。仿真结果表明新算法在前端带宽的影响下对短、中长多径均能进行有效地抑制。   相似文献   

11.
Strong equatorial scintillation is often characterized by simultaneous fast phase changes and deep amplitude fading. The combined effect poses a challenge for GNSS receiver carrier tracking performance. One of the consequences of the strong scintillation is increased navigation message data bit decoding error. Understanding the rate of the data bit decoding error under equatorial scintillation is essential for high accuracy and high integrity applications. We present the statistical relationship between the data bit decoding error occurrences and the intensity of amplitude scintillation based on the processing of intermediate frequency GPS scintillation data collected on Ascension Island in March 2013. A third-order phase lock loop (PLL) is implemented to process the data and to access the data bit error typically expected in conventional receivers. A Kalman filter-based PLL is also used to process the same data to demonstrate that the data bit decoding error can be reduced through advanced carrier tracking designs.  相似文献   

12.
A reduced inertial measurement unit (IMU) consisting of only one vertical gyro and two horizontal accelerometers or three orthogonal accelerometers can be used in land vehicle navigation systems to reduce volume and cost. In this paper, a reduced IMU is integrated with a Global Positioning System (GPS) receiver whose phase lock loops (PLLs) are aided with the Doppler shift from the integrated system. This approach is called tight integration with loop aiding (TLA). With Doppler aiding, the noise bandwidth of the PLL loop filters can be narrowed more than in the GPS-only case, which results in improved noise suppression within the receiver. In this paper, first the formulae to calculate the PLL noise bandwidth in a TLA GPS/reduced IMU are derived and used to design an adaptive PLL loop filter. Using a series of vehicle tests, results show that the noise bandwidth calculation formulae are valid and the adaptive loop filter can improve the performance of the TLA GPS/reduced IMU in both navigation performance and PLL tracking ability.  相似文献   

13.
Methodology for comparing two carrier phase tracking techniques   总被引:1,自引:0,他引:1  
The carrier phase tracking loop is the primary focus of the current work. In particular, two carrier phase tracking techniques are compared, the standard phase tracking loop, i.e., the phase lock loop (PLL), and the extended Kalman filter (EKF) tracking loop. In order to compare these two different techniques and taking into consideration the different models adopted in each, it is important to bring them to one common ground. In order to accomplish this, the equivalent PLL for a given EKF has to be determined in terms of steady-state response to both thermal noise and signal dynamics. A novel method for experimentally calculating the equivalent bandwidth of the EKF is presented and used to evaluate the performance of the equivalent PLL. Results are shown for both the L1 and L5 signals. Even though the two loops are designed to track equivalent dynamics and to have equivalent carrier phase standard deviations, the EKF outperforms the equivalent PLL in terms of both the transient response and sensitivity.  相似文献   

14.
The timing error between global navigation satellite system (GNSS) and inertial navigation system (INS) processes limits the integration performance in GNSS/INS integrated systems. In a deeply coupled system, this timing error affects not only the integrated navigation solution, but also the GNSS signal tracking. We propose a time-domain model of INS-aided second-order phase-locked loops (PLLs) in consideration of the INS aiding delay, and analyze the effect of INS aiding delay on the tracking errors in details. In addition, an integrated hardware deeply coupled system platform was developed to verify the impact of time delay on INS-aided PLLs. Simulation and field vehicles testing results demonstrate that the tracking error of the INS-aided PLL caused by aiding delay increases with the lengthening of the delay time, the compression of the bandwidth, and the increase in the acceleration. Testing results verify the proposed model.  相似文献   

15.
PLL Tracking Performance in the Presence of Oscillator Phase Noise   总被引:3,自引:3,他引:3  
The tracking performance of a Phase Lock Loop (PLL) is affected by the influence of several error sources. In addition to thermal noise and dynamic stress error, oscillator phase noise can cause significant phase jitter which degrades the tracking performance. Oscillator phase noise is usually caused by two different effects: Allan deviation phase noise is caused by frequency instabilities of the receiver's reference oscillator and the satellite's frequency standard. It can be termed as system-inherent phase noise and is relevant for both static and dynamic applications. “External” phase noise, however, is caused by vibration and is a major problem for dynamic applications. In the context of this paper, both types of phase noise will be modeled and the resulting integrals will be evaluated for PLLs up to the third order. Besides, phase jitter induced by thermal noise and signal dynamics will also be discussed, thus providing all necessary formulas for analyzing the performance of a phase lock loop in case of different forms of stress. Since the main focus is centered on the effects of oscillator phase noise, the overall PLL performance is graphically illustrated with and without consideration of oscillator phase noise. © 2002 Wiley Periodicals, Inc.  相似文献   

16.
理想情况下,数字锁相环(DPLL)的环路参数可以通过直接计算输入原子钟与压控振荡器(VCO)的相位噪声功率谱交点来确定. 但该方法不能考虑到锁相环(PLL)其他模块的噪声,这会导致输出性能恶化. 针对这一问题,文中从PLL模型出发,基于PLL环路传递函数和幂律谱模型,提出PLL模块噪声的等效方法. 该方法将PLL各模块噪声分别等效到输入和VCO的相位噪声上,使得PLL的噪声传递模型只含有等效输入噪声和等效VCO噪声. 然后可以直接计算两者相位噪声交点并设置合理的环路参数. 通过该方法确定的环路参数可以充分结合输入原子钟信号和VCO信号的相位噪声和频率稳定度特性,弥补了直接计算交点法不能考虑模块噪声的缺点. 实验表明:文中方法所选择的环路参数能使得输出信号具备良好的稳定度,可以为应用于净化原子钟信号的数字锁相装置环路参数的确定提供理论指导.   相似文献   

17.
In order to enhance the acquisition performance of global positioning system (GPS) receivers in weak signal conditions, a high-sensitivity acquisition scheme aided by strapdown inertial navigation system (SINS) information is proposed. The carrier Doppler shift and Doppler rate are pre-estimated with SINS aiding and GPS ephemeris, so that the frequency search space is reduced, and the dynamic effect on the acquisition sensitivity is mitigated effectively. Meanwhile, to eliminate the signal-to-noise ratio gain attenuation caused by data bit transitions, an optimal estimation of the unknown data bits is implemented with the Viterbi algorithm. A differential correction method is then utilized to improve the acquisition accuracy of Doppler shift and therefore to meet the requirement of carrier-tracking loop initialization. Finally, the reacquisition experiments of weak GPS signals are implemented in short signal blockage situations. The simulation results show that the proposed scheme can significantly improve the acquisition accuracy and sensitivity and shorten the reacquisition time.  相似文献   

18.
Stability, which is significantly related to the loop parameters, is an important factor in the traditional GPS tracking loop design. Through the analysis of phase margin values in the discrete GPS PLL tacking loop, we are able to theoretically reveal the relationship between loop stability, equivalent noise bandwidth B n , predetection integration time T, and loop parameters. We calculate the theoretical limitations for B n T, that is, the product of equivalent noise bandwidth multiplied by predetection integration time, for second- and third-order phase-locked loop, respectively. The results are verified by actual data from GPS receivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号