首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 146 毫秒
1.
艾青松  徐天河  孙大伟  任磊 《测绘学报》2016,45(Z2):132-138
根据北斗卫星导航系统星载原子钟自身的物理特性,采用武汉大学IGS数据中心发布的2016年1月1日至2016年11月1日共306天的事后钟差产品进行谱分析。分析结果表明:北斗卫星导航系统的3类卫星钟都存在一定的周期特性;其中GEO和IGSO卫星钟的主周期相对较为明显;GEO卫星钟的主周期依次为12、24、8和6h;IGSO的主周期为24、12、8和6h;而MEO的3个主周期为12.9、6.4和24h。依据各类原子钟的周期特性,同时对各天之间钟差的起始点偏差进行修正,并利用修正模型对北斗卫星钟差进行预报和精度分析。试验结果表明,改进的预报模型能显著提升北斗卫星的钟差预报精度,北斗卫星钟差24h、12h、6h的平均预报精度分别能达到6.55ns、3.17ns和1.76ns。  相似文献   

2.
王甫红  夏博洋  龚学文 《测绘学报》2016,45(12):1387-1395
提出了一种基于钟差变化率拟合建模的卫星钟差预报方法。以附加周期项的线性或二次多项式作为基础模型对钟差变化率序列进行拟合,最优估计卫星钟差的趋势项系数,然后直接使用精密定轨得到的相应时刻的卫星钟差计算预报初始时刻的基准项系数,来建立卫星钟差的预报模型。以IGS发布的快速星历(IGR)的卫星钟差为试验数据,对GPS星座中各种型号的所有卫星钟差进行预报。结果表明:本文方法3、6、12与24h的预报精度分别可达0.43、0.58、0.90与1.47ns,相比于传统的基于钟差拟合的预报方法,精度分别提高69.3%、61.8%、50.5%与37.2%;与IGS发布的超快速星历(IGU)的预报钟差相比,钟差精度分别提高15.7%、23.7%、27.4%与34.4%。  相似文献   

3.
北斗系统精密卫星钟差精度评价   总被引:1,自引:1,他引:0  
针对目前北斗卫星导航系统尚未形成统一的事后轨道和钟差产品的现状,该文提出了一种较为全面的北斗卫星导航系统精密卫星钟差精度评价方法,从钟差拟合残差标准差和天跳变等方面对北斗系统事后精密卫星钟差的精度进行了评价。使用相同方法对2013年全年、2014年上半年的北斗系统精密卫星钟差产品进行了评价,以此来分析定轨策略调整对卫星钟差的影响。结果表明,武汉大学分析中心解算的北斗系统精密卫星钟差产品的精度为分米级,大部分卫星的钟差精度优于0.2m,且定轨策略调整后倾斜地球同步轨道/中地球轨道卫星钟差产品的精度有小幅度提升;定轨策略调整前卫星钟差天跳变在0.2~0.5m间,但是调整后钟差天跳变显著增大,变化范围为2~3m,建议在实际应用中对其加以慎重处理。  相似文献   

4.
我国北斗卫星导航系统由GEO/IGSO/MEO混合星座构成,基本每7~10 d就会有一颗GEO卫星或IGSO卫星进行轨控操作。从卫星轨控开始,卫星存在5~6 h的不健康时期。造成机动卫星长期不健康的关键因素之一在于卫星和测站钟差数据的积累周期较长。本文提出了一种基于预报钟差的轨道快速恢复算法,通过结合星钟和站钟预报压缩机动卫星定轨观测数据积累的时间,从而缩短卫星恢复所需时间。6组机动试验结果表明:采用预报钟差策略在快速恢复初期的前几个小时对轨道预报的贡献尤为显著,对第1组定轨URE预报贡献最大可达84.82%。从3~8 h期间6组定轨平均情况来看,采用优化策略的预报URE,C01平均降低了26.06%,C04平均降低了31.58%,C03降低了9.95%。经测试该方法至少能将卫星不可用时间压缩1 h,对北斗系统建设具有重要工程应用价值。  相似文献   

5.
BDS星载原子钟长期性能分析   总被引:2,自引:2,他引:0  
王宇谱  吕志平  王宁 《测绘学报》2017,46(2):157-169
北斗卫星导航系统(BDS)于2012年底开始提供区域服务,进行BDS星载原子钟的长期性能分析,对于系统性能的评估、卫星钟差的确定与预报等具有重要的作用。本文基于3年的多星定轨联合解算的BDS精密卫星钟数据,利用改进的中位数方法进行数据预处理,分析了卫星钟差数据的特点,使用卫星钟差二次多项式拟合模型分析了卫星钟的相位、频率、频漂及钟差模型噪声的长期变化特性,根据频谱分析的方法分析了卫星钟差的周期特性,采用重叠哈达玛方差计算并讨论了卫星钟的频率稳定性。综合上述方法及其试验结果较为全面地分析和评估了BDS星载原子钟的长期性能,得到结论:在噪声特性和钟漂特性方面,MEO卫星钟的性能最好,其次是IGSO卫星钟,最差的是GEO卫星钟,所有卫星钟噪声水平和频漂的均值分别为0.677ns和1.922×10~(-18);多星定轨条件下的北斗卫星钟差存在显著的周期项,其主周期分别近似为对应卫星轨道周期的1/2倍或1倍;BDS星载原子钟频率稳定度的平均值为1.484×10~(-13)。  相似文献   

6.
基于自发自收测距的GEO卫星精密定轨   总被引:1,自引:0,他引:1  
对于基于伪距测量模式的GEO卫星定轨,需要星地时间同步和站问时间同步的支持,因此卫星钟差和接收机钟差的精度直接制约了GEO卫星的定轨精度.自发自收式测距的观测数据并不含有卫星钟差和接收机钟差信患,定轨解算中避免了钟差精度带来的影响,可以实现GEO卫星的精密定轨.此处采用GEO卫星的自发自收武测距数据进行精密定轨试验,分析和讨论了基于自发自收式测距的GEO卫星精密定轨策略,提出了卫星轨控后轨道快速恢复的定轨策略.试验结果表明:轨道的内符R方向精度为1.615 m,位置精度为11.642m,定轨残差为0.279m;轨道恢复1 h后的定轨位置精度优于60m,恢复6 h后的定轨位置精度优于15m,定轨残差在0.15 m左右.  相似文献   

7.
针对北斗卫星导航系统的卫星姿态模型、天线相位中心改正及卫星定轨数据处理策略未统一的现状,该文对比分析了武汉大学和德国地学研究中心提供的北斗事后精密轨道和钟差产品的差异及精度,结合实测数据,通过分析精密单点定位的定位精度来比较两中心精密轨道和钟差的差异。实验结果表明:北斗卫星的精密轨道精度与轨道类型有关,地球静止轨道(GEO)卫星的轨道精度为米级,倾斜地球同步轨道(IGSO)卫星的轨道精度为分米级,中地球轨道(MEO)卫星切向、法向和径向的精度分别为10.81、5.41和3.37cm;GEO卫星钟差精度优于0.38ns,IGSO卫星钟差优于0.25ns,MEO卫星钟差优于0.15ns;两家分析中心产品的北斗静态精密单点定位的平面精度相当;北斗静态精密单点定位的RMS统计值平面精度优于3cm,三维精度优于7cm。  相似文献   

8.
根据GEO导航卫星的轨道特性,给出了严密的伪距观测和载波相位观测数学模型;讨论了其轨道和星钟差的解算条件,以及多星组差定轨的可行性。结果表明:在利用伪距时,如果测站钟差已知,需要4个以上站的数据才能进行定轨和星钟解算;如果站钟、星钟钟差已知,需要3个以上站的数据才能确定轨道。在利用站间组差伪距时,须有4个以上测站的钟差信息才能进行轨道和星钟解算;利用GEO卫星与MEO(IGSO)卫星组差定轨时,需要GEO卫星钟差已知且有3组星间组差数据。利用GEO卫星载波相位观测资料,不能单独解算轨道。  相似文献   

9.
针对北斗卫星三号(BDS-3)卫星钟的表现情况的问题,该文选取了全球均匀分布的120个国际GNSS服务(IGS)跟踪站的北斗三号卫星观测数据进行北斗卫星钟差估计,利用评价卫星钟差产品的方法分析北斗新一代卫星钟的精度水平。得到结果如下:北斗卫星钟中圆地球轨道(MEO)精度在0.1 ns以内、倾斜地球同步轨道(IGSO)精度在0.15 ns以内,地球静止轨道(GEO)精度在0.2~0.9 ns水平;BDS-3卫星的频率的万秒稳定度已经处于1×10-14水平;GPS与BDS精密单点定位解算结果的均方根误差(RMS)均在厘米级。基于卫星钟差实验结果表明,MEO比IGSO卫星钟差精度高,稳定性强;BDS-3搭载的铷钟(Rb-Ⅱ)和氢钟(PHM)比BDS-2的铷钟(Rb)更稳定,这是因为发射较早的卫星钟普遍受到硬件老化影响,相位与频率的波动较大;BDS在U方向上的精度与收敛速度略有不足,可通过GPS+BDS组合定位提升U方向单点定位性能。北斗卫星钟的精度、稳定性已达到钟差预报及实时精密单点定位应用的需求。  相似文献   

10.
根据GEO导航卫星的轨道特性,给出了严密的伪距观测和载波相位观测数学模型;讨论了其轨道和星钟差的解算条件,以及多星组差定轨的可行性.结果表明:在利用伪距时,如果测站钟差已知,需要4个以上站的数据才能进行定轨和星钟解算;如果站钟、星钟钟差已知,需要3个以上站的数据才能确定轨道.在利用站间组差伪距时,须有4个以上测站的钟差信息才能进行轨道和星钟解算;利用GEO卫星与MEO(IGSO)卫星组差定轨时,需要GEO卫星钟差已知且有3组星间组差数据.利用GEO卫星载波相位观测资料,不能单独解算轨道.  相似文献   

11.
Orbit and clock analysis of Compass GEO and IGSO satellites   总被引:11,自引:5,他引:6  
China is currently focussing on the establishment of its own global navigation satellite system called Compass or BeiDou. At present, the Compass constellation provides four usable satellites in geostationary Earth orbit (GEO) and five satellites in inclined geosynchronous orbit (IGSO). Based on a network of six Compass-capable receivers, orbit and clock parameters of these satellites were determined. The orbit consistency is on the 1–2 dm level for the IGSO satellites and on the several decimeter level for the GEO satellites. These values could be confirmed by an independent validation with satellite laser ranging. All Compass clocks show a similar performance but have a slightly lower stability compared to Galileo and the latest generation of GPS satellites. A Compass-only precise point positioning based on the products derived from the six-receiver network provides an accuracy of several centimeters compared to the GPS-only results.  相似文献   

12.
北斗卫星导航系统单星授时精度分析   总被引:2,自引:1,他引:1  
为研究北斗卫星导航系统单星授时精度,本文基于GPS单星授时原理,结合北斗卫星多种类型星座特点,编写了BDS单星授时软件。利用iGMAS站数据进行了试验,在对原始数据进行监测并将异常信息剔除后,将授时结果与中国测绘科学研究院北斗分析中心(CGS)钟差文件进行比对,分析了BDS不同轨道卫星(GEO/IGSO/MEO)下的BDS单星授时精度。结果表明,GEO卫星的授时精度为27.39 ns,IGSO卫星的授时精度为18.37 ns,MEO卫星的授时精度为18.62 ns。  相似文献   

13.
GNSS增强系统中精密实时钟差高频估计及应用研究   总被引:1,自引:0,他引:1  
GNSS星基差分增强系统依赖于实时轨道及钟差增强信息。本文主要研究多GNSS实时精密钟差估计模型,在传统非差基础上优化待估参数,实现了一种高效的Multi-GNSS实时钟差简化估计模型。基于PANDA软件开展了实时轨道数据处理与分析,经过验证可获得的GPS/北斗MEO/Galileo实时轨道径向精度1~5cm,北斗GEO/IGSO卫星径向精度约10cm。分析发现本文优化的实时钟差简化估计模型单历元解算效率较高,可应用于实时钟差增强信息高频(如1Hz)更新,且解算获得的实时钟差不存在常偏为绝对钟差;基于实时轨道,通过该模型可获得实时钟差精度GPS约0.22ns,北斗GEO约0.50ns、IGSO/MEO约0.24ns,Galileo约0.32ns。在此基础上,利用目前所获取的MultiGNSS实时数据流搭建了Multi-GNSS全球实时增强原型系统,并基于互联网实时播发增强信息,可初步实现实时PPP厘米级服务、伪距米级导航定位服务。  相似文献   

14.
我国区域北斗卫星导航系统为用户提供开放服务和授权服务两种服务方式,其中授权服务主要提供一维等效钟差改正数和完好性信息,实现更高精度的服务性能。北斗卫星导航系统提供的实时差分信息是基于CNMC平滑后的伪距观测数据计算,其精度受到残余伪距噪声的限制。为提升系统广域差分服务性能,本文提出了一种广域差分新模型。该模型综合了伪距及相位观测数据,并新增了轨道改正数。模型中经相位平滑的伪距观测值用于定义钟差改正数和轨道改正数的基准,而相位历元间差分观测值用于计算约束差分改正数的高精度相对变化。论文分析了数据采样率、测站个数等因素对新模型的影响,并采用中国区域内的观测站数据对新模型进行精度验证。试验结果表明:(1)基于新广域差分模型的GEO卫星UDRE指标相对原有模型提升了27%,IGSO卫星指标提升了35%,MEO卫星指标提升了24%;(2)基于新的广域差分模型,用户在南北、东西、高程方向的伪距定位精度分别提升了23%、32%和52%,实现了北斗系统用户导航定位三维定位精度优于1m的指标。  相似文献   

15.
Precise orbit determination of BeiDou constellation: method comparison   总被引:3,自引:1,他引:2  
Chinese BeiDou navigation satellite system is in official service as a regional constellation with five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites and four medium earth orbit (MEO) satellites. There are mainly two methods for precise orbit determination of the BeiDou constellation found in the current literatures. One is the independent single-system method, where only BeiDou observations are used without help from other GNSS systems. The other is the two-step GPS-assisted method where in the first step, GPS data are used to resolve some common parameters, such as station coordinates, receiver clocks and zenith tropospheric delay parameters, which are then introduced as known quantities in BeiDou processing in the second step. We conduct a thorough performance comparison between the two methods. Observations from the BeiDou experimental tracking stations and the IGS Multi-GNSS Experiment network from January 1 to March 31, 2013, are processed with the Positioning and Navigation Data Analyst (PANDA) software. The results show that for BeiDou IGSO and MEO satellites, the two-step GPS-assisted method outperforms the independent single-system method in both internal orbit overlap precision and external satellite laser ranging validation. For BeiDou GEO satellites, the two methods show close performances. Zenith tropospheric delays estimated from the first method are very close to those estimated from GPS precise point positioning in the second method, with differences of several millimeters. Satellite clock estimates from the two methods show similar performances when assessing the stability of the BeiDou on board clocks.  相似文献   

16.
针对北斗导航卫星系统首创的GEO+IGSO+MEO混合星座设计,本文研究了根据不同星座,采取不同约束条件和数据处理策略的北斗卫星精密定轨方法,提出了一种针对北斗系统混合星座的分层约束精密定轨方案。该方案首先将北斗卫星分为非GEO(IGSO/MEO)和GEO两部分进行解算,利用GPS解算的公共参数对北斗IGSO/MEO精密定轨形成有效约束,然后固定GPS和北斗IGSO/MEO解算结果,最后单独对北斗GEO卫星进行强约束下的轨道解算。利用实测数据进行了精密定轨试验,试验结果表明:采用本文提出的方法,北斗GEO卫星和非GEO卫星三维重叠弧段轨道精度分别为0.688 m和0.042 m,比传统方法分别提高了54.2%和72.4%。另外,采用激光测距检核和测站坐标静态精密单点定位的方法对轨道精度进行了验证,激光检核精度提高了44.3%,测站坐标在水平和高程方向上精度分别平均提升了21.5%和20.7%。  相似文献   

17.
In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号