首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
A parallelized large-eddy simulation model has been used to investigate the effects of two-dimensional, discontinuous, small-scale surface heterogeneities on the turbulence structure of the convective boundary layer.Heterogeneities had a typical size of about the boundary-layer heightzi. They were produced by a surface sensible heat flux pattern ofchessboard-type and of strong amplitude as typical, e.g., for the marginalice zone. The major objectives of this study were to determinethe effects of such strong amplitude heat flux variations and to specify theinfluence of different speeds and directions of the background wind.Special emphasis has been given to investigate the secondary circulations induced by the heterogeneities by means of three-dimensional phase averages.Compared with earlier studies of continuous inhomogeneities, the same sizeddiscontinuous inhomogeneities in this study show similar but stronger effects.Significant changes compared with uniform surface heating are only observedwhen the scale of the inhomogeneities is increased to zi. Especially the vertical energy transport is much more vigorous and even the mean emperature profile shows a positive lapse rate within the whole mixed layer. However, the effects are not directly caused by the different shape of the inhomogeneities but can mainly be attributed to the large amplitude of the imposed heat flux,as it is typical for the partially ice covered sea during cold air outbreaks.The structure of the secondary flow is found to be very sensitive to the wavelength and shape of the inhomogeneities as well as to the heatflux amplitude, wind speed and wind direction. The main controlling parameter is the near-surface temperature distribution and the related horizontal pressure gradient perpendicular to the main flow direction. The secondary flow varies from a direct circulation with updraughts mainly above the centre of the heated regions to a more indirect circulation with updraughts beneath the centre and downdraughts above it. For background winds larger than 2.5 m s–1 a roll-like circulation pattern is observed.From previous findings it has often been stated that moderate backgroundwinds of 5 m s–1 eliminate all impacts of surface inhomogeneitiesthat could potentially be produced in realistic landscapes. However, this studyshows that the effects caused by increasing the wind speed stronglydepend on the wind direction relative to the orientation of theinhomogeneities. Secondary circulations remain strong, even for abackground wind of 7.5 m s–1, when the wind direction is orientatedalong one of the two diagonals of the chessboard pattern. On the otherhand, the effects of inhomogeneities are considerably reduced, even undera modest background wind of 2.5 m s–1, if the wind direction isturned by 45°. Mechanisms for the different flow regimesare discussed.  相似文献   

2.
An understanding of how the convective boundary layer (CBL) is mixed under heterogeneous surface forcing is crucial for the interpretation of area-averaged turbulence measurements. To determine the height and degree to which a complex heterogeneous surface affects the CBL, large-eddy simulations (LES) for two days of the LITFASS-2003 experiment representing two different wind regimes were undertaken. Spatially-lagged correlation analysis revealed the turbulent heat fluxes to be dependent on the prescribed surface flux pattern throughout the entire CBL including the entrainment layer. These findings prompted the question of whether signals induced by surface heterogeneity can be measured by airborne systems. To examine this question, an ensemble of virtual flights was conducted using LES, according to Helipod flight measurements made during LITFASS-2003. The resulting ensemble-averaged heat fluxes indicated a clear dependence on the underlying surface up to the top of the CBL. However, a large scatter between the flux measurements in different ensemble runs was observed, which was the result of insufficient sampling of the largest turbulent eddies. The random and systematic errors based on the integral length scale did not indicate such a large scatter. For the given flight leg lengths, at least 10–15 statistically independent flight measurements were necessary to give a significant estimate of heterogeneity-induced signals in the CBL. The need for ensemble averaging suggests that the observed blending of heterogeneity-induced signals in the CBL can be partly attributed to insufficient averaging.  相似文献   

3.
The influence of mesoscale circulations induced by urban-rural differential surface sensible heat flux and roughness on convective boundary-layer (CBL) flow statistics over an isolated urban area has been examined using large-eddy simulation (LES). Results are analyzed when the circulations influence the entire urban area under a zero background wind. For comparison, the CBL flow over an infinite urban area with identical urban surface characteristics under the same background meteorological conditions is generated as a control case (without circulations). The turbulent flow over the isolated urban area exhibits a mix of streaky structure and cellular pattern, while the cellular pattern dominates in the control case. The mixed-layer height varies significantly over the isolated urban area, and can be lower near the edge of the urban area than over the rural area. The vertical profiles of turbulence statistics over the isolated urban area vary horizontally and are dramatically different from the control case. The turbulent kinetic energy (TKE) sources include wind shear, convergence, and buoyancy productions, compared to only buoyancy production in the control case. The normalized vertical velocity variance is reduced compared to the control case except in the central urban area where it is little affected. The low-level flow convergence is mainly responsible for the enhanced horizontal velocity variance in the central urban area, while wind shear is responsible for the additional local maximum of the horizontal velocity variance near the middle of the CBL outside the central area. Parameterizations in the prognostic equation for TKE used in mesoscale models are evaluated against the LES results over the isolated urban area. We also discuss conditions under which the urban-induced circulations occur and when they may affect the entire urban area. Given that urban-induced circulations can influence the entire urban area within hours for an urban area of a realistic size, it is inappropriate to directly apply empirical relations of turbulence statistics derived under horizontally-homogenous flow conditions to an urban area.  相似文献   

4.
Large-eddy simulation is used to study secondary circulations in the convective boundary layer modulated as a result of horizontally varying surface properties and surface heat fluxes over flat terrain. The presence of heat flux heterogeneity and its alignment with respect to geostrophic wind influences the formation, strength and orientation of organized thermals. Results show boundary-attached roll formation along heat flux maxima in the streamwise direction. The streamwise organization of the updrafts and downdrafts formed downwind of heterogeneities leads to counter-rotating secondary circulations in the crosswind plane. The distribution of resolved-scale pressure deviations shows large pressure gradients in the crosswind plane. Spanwise and vertical velocity variances and heat flux profiles depict considerable spatial variability compared to a homogeneous forest simulation. Secondary circulations are observed for various ambient wind scenarios parallel and perpendicular to heterogeneities. In the presence of increased wind speed, thermals emerging from the heat flux heterogeneity are elongated, and organize along and downwind of large-scale heterogeneity in the streamwise direction. Simulation with a reduced heat flux shows a shallower circulation with a lower aspect ratio. Point measurements of heat flux inside the roll circulation could be overestimated by up to 15–25% compared to a homogeneous case.  相似文献   

5.
We used a set of large-eddy simulations to investigate the effect of one-dimensional stripe-like surface heat-flux heterogeneities on mixed-layer top entrainment. The profiles of sensible heat flux and the temporal evolution of the boundary-layer depth revealed decreased entrainment for small heat-flux amplitudes and increased entrainment for large heat-flux amplitudes, compared to the homogeneously-heated mixed layer. For large heat-flux amplitudes the largest entrainment was observed for patch sizes in the order of the boundary-layer depth, while for significantly smaller or larger patch sizes entrainment was similar as in the homogeneous case. In order to understand the underlying physics of this impact, a new approach was developed to infer local information on entrainment by means of the local flux divergence. We found an entrainment maximum over the centre of the stronger heated surface patch, where thermal energy is accumulated by the secondary circulation (SC) that was induced by the surface heterogeneity. Furthermore, we observed an entrainment maximum over the less heated patch as well, which we suppose is to be linked to the SC-induced horizontal flow convergence at the top of the convective boundary layer (CBL). For small heat-flux amplitudes a counteracting effect dominates that decreases entrainment, which we suppose is the horizontal advection of cold air in the lower, and warm air in the upper, CBL by the SC, stabilizing the CBL and thus weakening thermal convection. Moreover, we found that a mean wind can reduce the heterogeneity-induced impact on entrainment. If the flow is aligned perpendicular to the border between the differentially-heated patches, the SC and thus its impact on entrainment vanishes due to increased horizontal mixing, even for moderate wind speeds. However, if the flow is directed parallel to the border between the differentially-heated patches, the SC and thus its impact on entrainment persists.  相似文献   

6.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

7.
利用2008年4~5月大理国家气候观象台近地面层观测系统的梯度、涡动相关通量观测资料,结合背景场环流分析,分析了西南季风爆发前后大理近地面层的风速、风向变化特征、风速廓线和垂直切变变化特征以及动量、感热和潜热通量变化特征。结果显示:西南季风爆发前,大理近地层风向以东南风为主,平均风速较大;风速日变化的双峰型特征较显著,风速的垂直切变大,动量通量数值较大且日变化特征较明显。西南季风爆发后,大理近地层西北风频率显著增加,平均风速减小;风速日变化以单锋型为主,风速垂直切变较前期显著减小,动量通量数值减小而日变化特征较不显著。西南季风开始前后大理地气热量交换都以潜热为主,西南季风开始前一旬期间,潜热通量的逐日变化特点是随时间逐渐减少,感热通量逐渐增大,二者差值逐渐减小;西南季风开始后潜热通量的逐日变化为逐渐增大而感热通量逐渐减少,二者差值逐渐增大。就月平均值的日变化而言,潜热通量峰值变化不大,雨季略低于干季的4月;感热通量4~6月的月平均逐月降低。其原因既与雨季天气的变化有关,也与下垫面状况的改变相联系。  相似文献   

8.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

9.
夏季青海湖局地环流及大气边界层特征的数值模拟   总被引:5,自引:8,他引:5  
使用美国NCAR新版MM5V3.6非静力模式,采用两重嵌套方法,模拟了青海湖区域的局地环流及大气边界层特征,并且与无湖试验进行了比较。结果表明:白天由于青海湖的存在有很好的降温作用,夜晚则有保温效应,表现出明显的冷(暖)湖效应;青海湖对感热和潜热的影响有很强的日变化,白天湖面感热、潜热都小,夜间情况相反,这使得白天青海湖是冷干岛,夜间是暖湿岛;青海湖使得白天湖面边界层顶低,陆面边界层顶高,夜间相反。这样的边界层顶高度和温度、地面能量通量相配合,形成了一个很好的保护机制,对青海湖的水土保持和生态环境的维持有正效应;青海湖使得湖面上空大气下沉,陆面上空大气上升,从而产生了湖面上空大气冷干,陆面上空大气暖湿的边界层特征;青海湖边缘的陆面形成的较大的湿气柱围绕着湖面,起到了保护湖面的作用;青海湖低空白天有明显的湖面向四周的辐散气流,而夜间则为从北偏东方向来的陆风。  相似文献   

10.
Turbulent fluxes of sensible and latent heat were measured with the helicopter-borne turbulence probe Helipod over a heterogeneous landscape around the Meteorological Observatory Lindenberg during the STINHO-2 and LITFASS-2003 field experiments. Besides the determination of area-averaged heat fluxes, the analysis focused on different aspects of the response of the turbulent structure of the convective boundary layer (CBL) on the surface heterogeneity. A special flight pattern was designed to study flux profiles both over quasi-homogeneous sub-areas of the study region (representing the major land use types—forest, farmland, water) and over a typical mixture of the different surfaces. Significant differences were found between the heat fluxes over the individual surfaces along flight legs at about 80 m above ground level, in agreement with large-aperture scintillometer measurements. This flux separation was still present during some flights at levels near the middle of the CBL. Different scales for the blending height and horizontal heterogeneity were calculated, but none of them could be identified as a reliable indicator of the mixing state of the lower CBL. With the exception of the flights over water, the latent heat flux measurements generally showed a larger statistical error when compared with the sensible heat flux. Correlation coefficients a nd integral length scales were used to characterise the interplay between the vertical transport of sensible and latent heat, which was found to vary between ‘fairly correlated’ and ‘decoupled’, also depending on the soil moisture conditions.  相似文献   

11.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer (CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting (WRF)-large eddy simulation (LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy (TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation (SC)/turbulent organized structures (TOS) is the strongest/weakest when soil water content in oases is close to saturation (e.g., when the oases are irrigated). With the decrease of soil water content in oases (i.e., after irrigation), SC (TOS) becomes weak (strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small (large), which has a dramatic impact on point measurement of eddy covariance (EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio (i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover, we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

12.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer(CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting(WRF)-large eddy simulation(LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy(TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation(SC)/turbulent organized structures(TOS) is the strongest/weakest when soil water content in oases is close to saturation(e.g.,when the oases are irrigated). With the decrease of soil water content in oases(i.e., after irrigation), SC(TOS) becomes weak(strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small(large), which has a dramatic impact on point measurement of eddy covariance(EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio(i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover,we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

13.
The influence of vegetation and environmental conditions on the lake breeze and associated boundary-layer turbulence structure has been studied using a two-dimensional nonhydrostatic, compressible mesoscale model coupled with the SiB2 land-surface scheme. The results show that the impacts of vegetation on the lake effects are dependent on the environmental conditions, such as soil wetness and background wind, as well as vegetation characteristics. Both soil wetness and background wind play important roles in modifying lake effects on boundary-layer turbulence and the lake breeze, while the effects of vegetation type are secondary compared to the other factors. Without background wind, and under the same soil wetness, the maximum horizontal windspeed of the lake breeze is insensitive to the type of vegetation. Soil wetness can greatly affect both the maximum horizontal windspeed and the maximum vertical velocities of the lake breeze. With background wind, the lake-breeze circulations, upward motion regions, and boundary-layer turbulence structure all change markedly. A weaker background wind can strengthen the lake breeze, while stronger background wind suppresses the lake breeze circulations. The distribution of sensible and latent heat fluxes is also very sensitive to the soil wetness and background wind. However, for the same soil wetness (0.25 and 0.4 were chosen), there is only a small difference in the distribution of sensible and latent heat fluxes between the bare soil and vegetated soil or between the types of vegetated soils.  相似文献   

14.
This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.Formerly affiliated to the Frontier Observational Research System for Global ChangeFormerly affiliated to the Frontier Observational Research System for Global Change  相似文献   

15.
Large-eddy simulations (LES) are performed to investigate the entrainment andthe structure of the inversion layer of the convective boundary layer (CBL) withvarying wind shears. Three CBLs are generated with the constant surface kinematicheat flux of 0.05 K m s-1 and varying geostrophic wind speeds from 5 to 15m s-1. Heat flux profiles show that the maximum entrainment heat flux as afraction of the surface heat flux increases from 0.13 to 0.30 in magnitude withincreasing wind shear. The thickness of the entrainment layer, relative to the depthof the well-mixed layer, increases substantially from 0.36 to 0.73 with increasingwind shear. The identification of vortices and extensive flow visualizations nearthe entrainment layer show that concentrated vortices perpendicular to the meanboundary-layer wind direction are identified in the capping inversion layer for thecase of strong wind shear. These vortices are found to develop along the mean winddirections over strong updrafts, which are generated by convective rolls and to appearas large-scale wavy motions similar to billows generated by the Kelvin–Helmholtzinstability. Quadrant analysis of the heat flux shows that in the case of strong windshear, large fluctuations of temperature and vertical velocity generated by largeamplitude wavy motions result in greater heat flux at each quadrant than that inthe weak wind shear case.  相似文献   

16.
利用NCEP资料分析得出,夏季我国干旱,半干旱区在整个欧亚大陆上是陆面感热通量最强的地方,与此对应的陆面潜热通量则最弱.陆面所接收的太阳短波辐射主要以感热和长波辐射的能量形式释放.该区降水量很少,降水量的年际变率也很弱;因此,该区的陆面热量通量都显出很弱的年际变率;然而,这些通量的年代际变率信号则比较显著.我国干旱、半干旱区大气环流的热力过程与其陆面过程特征密切相关.该区对流层大气的辐射冷却很强,达-3 K d-1.由于缺乏水汽和上升运动,大尺度凝结加热率、深对流加热率、浅对流加热率都非常弱.因此,600hPa以上的大气以绝热下沉加热来平衡辐射冷却;600hPa以下,陆面感热引起的垂直扩散加热率非常强,多达8 K d-1,它除了平衡辐射冷却以外还制造对流层低层的对流运动,以绝热上升冷却来平衡多余的垂直扩散加热.总之,我国干旱、半干旱区的陆面过程特征决定了该区大气运动的特殊垂直结构,即对流层低层对流上升运动及其上层的下沉运动.我国干旱、半干旱区陆面能量平衡及其局地大气环流的年代际变率,是全球气候系统年代际变率的必然结果.  相似文献   

17.
The modified ogive analysis and the block ensemble average were employed to investigate the impact of the averaging time extension on the energy balance closure over six land-use types. The modified ogive analysis, which requires a steady-state condition, can extend the averaging time up to a few hours and suggests that an averaging time of 30 min is still overall sufficient for eddy-covariance measurements over low vegetation. The block ensemble average, which does not require a steady-state condition, can extend the averaging time to several days. However, it can improve the energy balance closure for some sites during specific periods, when secondary circulations exist in the vicinity of the sensor. These near-surface secondary circulations mainly transport sensible heat, and when near-ground warm air is transported upward, the sensible heat flux observed by the block ensemble average will increase at longer averaging times. These findings suggest an alternative energy balance correction for a ground-based eddy-covariance measurement, in which the attribution of the residual depends on the ratio of sensible heat flux to the buoyancy flux. The fraction of the residual attributed to the sensible heat flux by this energy balance correction is larger than in the energy balance correction that preserves the Bowen ratio.  相似文献   

18.
The role of a river of small dimensions in driving the surface exchange of sensible and latent heat fluxes at the bottom of a valley is investigated using large-eddy simulation (LES). Simulations were performed using different valley topographies, river widths and large-scale wind speed and direction. In all cases, the river acted as a sink of both sensible and latent heat during daytime. Despite the general agreement concerning the flux direction above the river surface, specific differences exist between the simulations. The topography enhances the wind divergence caused by the river, and the larger negative surface fluxes above the river occur when there are no slopes, a consequence of larger wind speeds above the river. For large-scale winds aligned with the valley axis, the surface fluxes depend on the large-scale wind speed, but this dependence is reduced if the large-scale wind is perpendicular to the valley axis. There is a minimum of temperature and a maximum of specific humidity above the river surface. The scalar budgets show that sensible heat flux converges above the river, being balanced by the warm air subsidence at the centre of the valley. Latent heat fluxes, on the other hand, converge above the river surface, and they are balanced by the horizontal advection of humidity towards the river margins.  相似文献   

19.
Summary ?In order to further understand the land–atmosphere interactions and increase the predictability of climate models, it is very important to investigate the effects of land-surface heterogeneities. In this paper, we considered roughness-length and stomatal-resistance heterogeneities in the regional climate model RegCM2 (Giorgi et al., 1993) that employs BATS (Dickinson et al., 1993) as the land surface scheme. In representing the subgrid heterogeneities, a computationally efficient method, which is a combination of the mosaic approach and the analytical type of the statistical-dynamical approach, is applied. The method is also characterized by converting the probability distribution of fundamental variables to probability distributions of derived quantities. By using the 3-month observational data of 1991 Meiyu season over China, we conducted coupled-model experiments, and found that: (i) For the whole model domain, the consideration of the two heterogeneities, in which intrapatch variability plays a very important role, greatly affects the simulations for the surface flux, wind, temperature and precipitation fields. (ii) The temperature and heat fluxes are quite sensitive to the heterogeneities, which displays the following rule: for a sub-region, the mean sensible heat flux decreases, the mean latent heat flux increases, and the mean surface temperature decreases with the increase of the heterogeneities. Furthermore, the mean latent heat flux is more sensitive to the heterogeneities than the mean sensible heat flux. (iii) It seems that the influence of stomatal-resistance heterogeneity on the latent heat flux is greater than that of roughness-length heterogeneity. Therefore, it is necessary to appropriately represent subgrid land-surface heterogeneities so as to improve regional climate modeling. Received June 19, 2001; Revised January 21, 2002  相似文献   

20.
热带太平洋-印度洋海温异常综合模的数值模拟   总被引:1,自引:0,他引:1  
通过数值模拟及结果的合成分析,对热带太平洋-印度洋异常海温综合模态的三维热力结构、动力结构及其发生发展的可能机制进行了研究.数值模拟结果的分析表明,太平洋、印度洋海温异常的综合模态在表层、次表层的表现都很明显,即在赤道西印度洋、中东太平洋的海温偏高(低)时,赤道西太平洋、东印度洋的海温偏低(高),该模态还存在着显著的年变化特征、年际变化特征以及年代际变化特征.数值模拟的合成分析结果表明,异常的海表风应力引起表层洋流异常,表层洋流异常及由其引起的海表高度异常可导致次表层海水环流的异常,海洋环流异常导致的平流热输送异常是海温形成异常综合模态的主要原因之一,垂直输送是形成次表层海温综合模态的主要原因.平流热输送过程对海表温度变异的贡献是:在事件发生到盛期阶段促进了次表层海温异常综合模态的形成,在盛期到消亡阶段次表层的平流过程阻碍其进一步发展;短波辐射是海洋的主要热力来源,海表面异常的净短波辐射通量、潜热通量是表层海温形成异常模态的主要热力学原因,异常的海表面净短波辐射通量、潜热通量、感热通量在到达盛期阶段后抑制其进一步发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号