首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
基于1901—2010年ERA-20C地表感热通量和其他气象要素逐月资料,利用Lanczos低通滤波、多元逐步回归、Mann-Kendall检验和滑动t检验等方法,分析东亚典型极端干旱区、干旱区、半干旱区和湿润偏干区4个区域夏季感热通量的变化趋势及年代际变化特征。结果表明:(1)近110 a,东亚干旱、半干旱区4种类型区域的夏季感热通量变化趋势不尽相同,极端干旱区无明显变化趋势,而其他3个区域均呈显著上升趋势,且随着地表湿润度的增加上升趋势越大;半干旱区和湿润偏干区夏季感热通量在显著上升趋势上还叠加了明显的年代际特征,均在1960年代发生由偏低向偏高的突变,而干旱区夏季感热通量突变时间在1950年代中期。(2)各气象要素对夏季感热通量变化的贡献在东亚干旱、半干旱区不同区域有显著差异。极端干旱区和干旱区夏季感热通量的变化主要由地表净辐射和降水贡献,而半干旱区和湿润偏干区则主要由地气温差和10 m风速贡献,且突变后期的贡献均高于突变前期。(3)大气环流异常对东亚夏季感热通量变化有重要作用。突变前期,东亚干旱、半干旱区大部高空200 hPa为东风异常,低层850 hPa为东南风异常,配合500 hPa正涡度异常,导致辐合上升气流偏强,有利于维持夏季感热通量偏低;反之突变后期,200 hPa为西风异常,500 hPa为负涡度异常,低层850 hPa为西北风异常,导致辐合上升气流偏弱,有利于维持夏季感热通量偏高。  相似文献   

2.
利用黄土高原半干旱区"定西陆面过程综合观测试验站"2004年11月至2005年10月的各种陆面物理量综合资料,比较系统地研究了黄土高原半干旱区土壤温度、降水量、地表反照率、地表辐射分量和能量平衡分量的年变化和日变化特征及其影响机制。结果显示,黄土高原陆面过程特征与其他地区有很大不同。土壤温度变化向下传播速度约为2.5~3.5 h/10cm;地表反照率随土壤湿度的增大而减小,两者的相关系数达到了0.5338;而地表反照率随降雪量增大而增大,与降雪量的相关系数为0.6645;长波辐射年最大值出现的时间比总辐射迟1个月左右,年平均日变化中地表和大气对太阳辐射加热大约需要1个小时的响应时间;潜热通量夏季是冬季的5倍多,感热通量有了两个比较明显的峰值,潜热通量、感热通量和土壤热通量的日峰值比净辐射滞后30 min~1 h。  相似文献   

3.
亚——非季风区非绝热加热与夏季环流关系的诊断研究   总被引:4,自引:0,他引:4  
基于热力适应理论,本文利用 NCEP/ NCAR再分析资料对撒哈拉沙漠、青藏高原和孟加拉湾地区的非绝热加热与夏季环流进行了诊断研究。在非洲撒哈拉沙漠地区,以感热输送为主的加热仅局限于近地面层,边界层以上的大气则以辐射冷却占优势。因而除了边界层内存在着浅薄的正涡度和微弱的上升运动以外,整个对流层几乎都维持负涡度并盛行下沉运动。对于青藏高原地区,强大的表面感热通量引起的垂直扩散是近地面大气加热的主要分量,与大尺度上升运动相关的凝结潜热对低层大气的加热也有一定的贡献。长波辐射造成的对流层中、上层大气的冷却则主要由深对流潜热释放来补偿。夏季高原地区总非绝热加热是正值,且最大加热率出现在边界层内。低空大气辐合产生正涡度,而中、高层大气辐散伴有较强的负涡度。因而高原盛行上升运动,最大上升运动位于近地面层。夏季孟加拉湾地区的深对流凝结潜热释放远大于长波辐的冷却作用,因而整个对流层几乎都保持较强的非绝热加热。400hPa层附近的最大加热率引起300-400hPa最强的上升运动。对流层上层是负涡度区,而中、低层为正涡度区。结果还表明,垂直和水平辐散环流与大气的热源和热汇区密切相联:在高层,辐散气流从热源区流向热汇区;在低层则相  相似文献   

4.
大气CO2浓度增加,大气辐射平衡调整,将影响到大气的辐射加热,对季风环流的产生影响.CMIP6结果显示,大气CO2浓度增加,可减弱季风区主雨季对流层高,低层的辐射加热,加强对流层中层的辐射加热.各季风区加热响应的峰值层次不同:亚洲季风区平均层次最高(500-775 hPa),北非,南美,澳洲季风区次之(550-600 hPa),北美(600hPa)和南非季风区(600-775 hPa)较低.各季风区水云的垂直分布及其长波辐射效应的变化是形成峰值层次差异的主因.  相似文献   

5.
对大气环流模式PIAP3进行了30 a季节运行, 对其物理过程的温度调整倾向进行了系统分析, 研究发现:大气总辐射效应以冷却为主, 长波辐射温度倾向与温度本身具有负反馈关系, 与云量有正反馈关系。太阳短波辐射加热倾向直接反映了太阳直射点冬夏的季节转换;深厚对流和大尺度降水, 作为大气的重要加热机制, 是辐射冷却的重要平衡因子, 两者地域互补, 前者加热热带深厚大气, 后者主要加热中高纬对流层中低层大气。干、湿对流是低层大气热力混合的有效机制, 分别完成北半球中高纬和热带地区的低层热力混合, 两者共同作用消除不稳定。垂直涡旋扩散与浅积云对流对低层大气形成热量传输的互补匹配, 两者分别实现陆面和海面低层大气热量的有效传输混合, 并共同构成下垫面边界层和自由大气间的有效垂直传输机制。浅对流活跃区处于强盛深厚对流区的下游方向, 大尺度层结降水有利于浅积云的发展。物理过程净温度调整是各过程调整平衡的结果, 除赤道南北两侧的热带地区存在两个深厚的温度调整柱外, 边界层以上的整个对流层主体均以降温为主, 而边界层以下则以加热为主。  相似文献   

6.
大气CO_2浓度增加,大气辐射平衡调整,将影响到大气的辐射加热,对季风环流的产生影响.CMIP6结果显示,大气CO_2浓度增加,可减弱季风区主雨季对流层高,低层的辐射加热,加强对流层中层的辐射加热.各季风区加热响应的峰值层次不同:亚洲季风区平均层次最高(500-775 hPa),北非,南美,澳洲季风区次之 (550-600 hPa),北美(600hPa)和南非季风区(600-775 hPa)较低.各季风区水云的垂直分布及其长波辐射效应的变化是形成峰值层次差异的主因.  相似文献   

7.
西北干旱区荒漠戈壁陆面过程的数值模拟   总被引:13,自引:0,他引:13  
曹晓彦  张强 《气象学报》2003,61(2):219-225
首先利用“中国西北干旱区陆 气相互作用试验”2 0 0 0年 5~ 6月在甘肃敦煌进行的陆 气相互作用野外试验的观测资料 ,确定了西北干旱区荒漠戈壁的陆面过程参数 ,并用这些参数改进了已有的陆面过程模式。然后用该陆面过程模式对敦煌陆 气相互作用野外试验荒漠戈壁上的大气感热通量、潜热通量、摩擦速度以及净辐射、地表和土壤温度、土壤水份等重要陆面变量进行了模拟 ,结果表明 ,模拟值与观测值非常接近 ,这说明改进后的模式对干旱区陆面过程有较强的模拟能力  相似文献   

8.
张盈盈  李忠贤  刘伯奇 《大气科学》2015,39(6):1059-1072
本文基于日本气象厅(JMA)的JRA-25再分析资料,分析了春季青藏高原表面感热加热年际变化的时空特征,及其对印度夏季风爆发过程的影响。EOF分析结果表明,春季高原感热加热的年际变化在高原中西部最为明显,这主要与局地地-气温差的年际变率有关。统计分析表明,当春季高原中西部表面感热偏强(弱)时,印度夏季风爆发偏早(晚),且高原中西部表面感热与ENSO事件无显著相关。春季高原中西部感热能够通过改变印度季风区对流层高层和低层的经向热力结构来影响印度夏季风的爆发时间。当春季高原中西部感热偏强时,造成的上升气流在高原以西的印度季风区北部下沉,通过绝热增暖引起局地对流层中上部的异常暖中心,令印度季风区对流层中上部平均温度经向梯度由冬至夏的季节性反转提早。同时,印度季风区北部的下沉运动能够抑制当地降水,令陆面温度升高,并通过非绝热过程造成对流层低层的异常暖中心,进一步增强了印度季风区的海陆热力对比。在印度季风区以北地区对流层高、低层异常增暖的共同作用下,印度夏季风提前爆发。  相似文献   

9.
欧亚大陆干旱半干旱区感热通量的时空变化特征   总被引:4,自引:0,他引:4  
利用1958—2002年ERA-40再分析感热通量资料进行EOF分析,结果显示,无论春季还是夏季,欧亚大陆干旱半干旱区感热通量都有3个主模态。第1模态都表示空间分布的一致性,20世纪70年代中后期开始,欧亚大陆干旱半干旱区春季感热通量明显增强,而夏季却明显减弱。第2、3模态表示了空间分布的不一致性,且存在年际、年代际变化特征。小波分析结果表明,欧亚大陆春、夏季感热通量存在明显的年际、年代际变化特征,且年代际变化信号强于年际变化信号。  相似文献   

10.
中国北方不同气候区晴天陆面过程区域特征差异   总被引:5,自引:0,他引:5       下载免费PDF全文
曾剑  张强  王胜 《大气科学》2011,35(3):483-494
采用2008年7~9月份观测的中国干旱-半干旱区实验观测协同与集成研究资料,将我国北方干旱一半干旱区根据气候类型和地理位置划分为西北干旱区、黄土高原区和东北冷区三个区域,分析了干旱-半干旱区陆面热量平衡和辐射平衡日变化的区域差异.结果显示:不同气候区域的地表辐射和能量过程差异明显,而这种差异主要源于大气和土壤中可利用水...  相似文献   

11.
    
Utilizing data from NCEP/ NCAR reanalysis, the summertime atmospheric diabatic heating due to different physical processes is investigated over the Sahara desert, the Tibetan Plateau, and the Bay of Bengal. Atmospheric circulation systems in summer over these three areas are also studied. Thermal adaptation theory is employed to explain the relationship between the circulation and the atmospheric diabatic heating. Over the Sahara desert, heating resulting from the surface sensible heat flux dominates the near-surface layer, while radiative cooling is dominant upward from the boundary layer. There is positive vorticity in the shallow boundary layer and negative vorticity in the middle and upper troposphere. Downward motion prevails over the Sahara desert, except in the shallow near—surface layer where weak ascent exists in summer. Over the Tibetan Plateau, strong vertical diffusion resulting from intense surface sensible heat flux to the overlying atmosphere contributes most to the boundary layer heating, condensation associated with large—scale ascent is another contributor to the lower layer heating. Latent heat release accompanying deep convection is critical in offsetting longwave radiative cooling in the middle and upper troposphere. The overall diabatic heating is positive in the whole troposphere in summer, with the most intense heating located in the boundary layer. Convergence and positive vorticity occur in the shallow near—surface layer and divergence and negative vorticity exist deeply in the middle and upper troposphere. Accordingly, upward motion prevails over the Plateau in summer, with the most intense rising occurring near the ground surface. Over the Bay of Bengal, summertime latent heat release associated with deep convection exceeds longwave radiative cooling, resulting in intense heating in almost the whole troposphere. The strongest heating over the Bay of Bengal is located around 400 hPa, resulting in the most intense rising occurring between 300 hPa and 400 hPa, and producing positive vorticity in the lower troposphere and negative vorticity in the upper troposphere. It is also shown that the divergent circulation is from a heat source region to a sink region in the upper troposphere and vice versa in lower layers. This work was jointly supported by “ National Key Program for Developing Basic Sciences” G1998040904 by NSFC projects 49805003, 49635170, 49823002, and 49825504.  相似文献   

12.
王慧  李栋梁 《高原气象》2012,31(2):312-321
选取1981年7月-2006年12月美国国家海洋和大气局(NOAA)系列卫星观测的归一化植被指数(NDVI)资料和Ch-INDV参数化关系式,计算了我国西北干旱区84个测站历年各月的地表热力输送系数Ch值和地面感热通量序列,得到如下主要结论:(1)西北干旱区地面感热通量实际计算值与ERA-40再分析感热资料相比,两者在数值大小、分布形势和年际变化趋势上均较一致,感热实际计算值的空间分布更明显地突出了各气象站所在区域的局地特征。(2)西北干旱区地面感热输送呈单峰型年变化特征,春、夏季非常强,秋、冬季较弱;大部分区域全年均为正值,地表为感热源。(3)以97.5°E为界,西北干旱区东、西部具有不同的年际变化趋势,东部的地面感热四季均有逐年增加的趋势,而西部秋、冬季逐年略有增加,春、夏季逐年减弱明显,气候倾向率分别为-1.15 W.m-2.(10a)-1和-2.08W.m-2.(10a)-1。(4)西北干旱区地面感热输送具有明显的年代际变化特征,1980年代总体偏强,1990年代总体偏弱,2000年以来,西北地区中部的感热输送偏弱,东、西部除个别测站外均偏强。(5)西北干旱区的感热变化并不只由地气温差的变化来决定,它与地面风速和地表状况的变化也有较强的依赖关系。在冬季,主要响应地气温差的变化,春季地面风速和地气温差的影响作用同等重要,夏季以地面风速的影响为主,地气温差的影响次之,秋季与夏季相反。另外,夏季地表状况对感热的影响作用也不容忽视。  相似文献   

13.
本文利用约束变分客观分析法构建的物理协调大气变分客观分析模型,通过融合地面、探空、卫星等多源观测资料和ERA-Interim再分析资料,建立了青藏高原那曲试验区5年(2013~2017年)长时间序列的热力、动力相协调的大气分析数据集,并以此分析那曲试验区大气的基本环境特征与云—降水演变和大气动力、热力的垂直结构。分析表明:(1)试验区350 hPa以上风速的季节变化非常明显,风速在冬季11月至次年2月达到最大(>50 m s?1),盛夏7~8月风速的垂直变化最弱,温度的垂直变化最强,大气高湿区在夏秋雨季位于350~550 hPa,在冬春干季升至300~400 hPa。(2)试验区6~7月上旬降水最多;春、秋、冬三季,300~400 hPa高度层作为大气上升运动和下沉运动的交界处,是云量的集中区;夏季,增多的水汽和增强的大气上升运动导致高云和总云量明显增多,中、低云减少。(3)夏季的地表潜热通量与大气总的潜热释放最强,大气净辐射冷却最弱,高原地区较强的地面感热导致试验区500 hPa以下的近地面全年存在暖平流,500 hPa以上则由于强烈的西风和辐射冷却存在冷平流。此外,试验区整层大气全年以干平流为主,但在夏季出现了较弱的湿平流。(4)视热源Q1具有明显的垂直分层特征:全年500 hPa以下大气表现为冷源,300~500 hPa和100~150 hPa表现为热源,150~300 hPa则在冬春干季表现为冷源,在夏秋雨季表现为热源,不同高度层的冷、热源的形成原因不同,其中夏季由于增强的上升运动、感热垂直输送和水汽凝结潜热以及高云的形成,因此几乎整层大气表现为热源。  相似文献   

14.
The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.  相似文献   

15.
西北干旱区感热异常对中国夏季降水影响的模拟   总被引:12,自引:0,他引:12  
高荣  董文杰  韦志刚 《高原气象》2008,27(2):320-324
利用最新版的RegCM3模式通过增加西北干旱区地面向大气的感热输送,模拟了西北干旱区春、夏季感热异常对中国夏季降水的影响。结果表明:西北地区地面向大气的感热输送增加后,西北干旱区低层空气温度升高,空气密度减小使得空气有上升运动距平,减弱了空气的下沉运动,从而在新疆地区降水增加。西北地区下沉气流减弱使得高空气压更强,形成反气旋气流距平,导致高原地区上升气流减弱,在青藏高原降水减少。高原地区上升气流减弱导致在长江中下游和东北北部分别有负的气压距平中心,使得这里有气旋式距平环流,降水增加;而在华南、西南、华北南部和东北南部降水减少。  相似文献   

16.
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000.While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets,both land-air temperatures difference and surface wind speed show remarkable systematic differences.The sensible heat flux displays obvious interdecadal variability that is season-dependent.In the ERA-40 data,the sensible heat flux in spring,fall,and winter shows interdecadal variations that are similar to observations.In the NCEP-NCAR reanalysis data,sensible heat flux variations are inconsistent with and sometimes even opposite to observations.While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations,variations in land-air temperature difference differ greatly from the observed dataset.In terms of land-air temperature difference and surface wind speed,almost no consistency with observations can be identified in the ERA-40 data,apart from the land-air temperature difference in fall and winter.These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.  相似文献   

17.
沙尘气溶胶对半干旱区微气象学特征影响的初步研究   总被引:3,自引:1,他引:2  
沙尘气溶胶通过改变地表—大气间的短波及长波辐射从而对地气间热量传输产生影响,进而影响到地表能量收支平衡以及近地面层气象要素的分布。半干旱区是我国干旱化表现最为剧烈的地区,也是沙尘暴频发地区和主要源区之一。本文利用吉林通榆半干旱区国际协调强化观测计划基准站2006年4~6月近地层微气象、地表辐射通量和沙尘气溶胶浓度观测资料,对比分析了该地区在典型沙尘暴天气、扬沙天气和晴朗天气等不同天气状况下近地层各气象要素、地表能量平衡及辐射收支的变化特征。结果表明,沙尘气溶胶对半干旱地区地面微气象学特征及辐射收支具有明显的影响,且表现出不同于干旱区的若干特性:半干旱区沙尘天气下的平均风速比晴天高约2m.s-1,而相对湿度则降低了约35%。相对而言,气温和浅层地温的变化对沙尘的影响响应较弱。半干旱区在沙尘天气时地表净辐射小于晴天,感热/潜热通量分别约占净辐射的55%和30%,分别远大于/远小于晴天时的情形。该地区气溶胶质量浓度与日均感热、相对湿度、潜热等要素具有明显的相关,相关系数分别高达0.70、-0.75和-0.62。相比之下,干旱区沙尘天气时的感热通量要小于晴天时的值,而且气象要素的响应更加剧烈。  相似文献   

18.
The present study investigates the persistence of summer sea surface temperature anomalies(SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time(approximately 8–14 months)around the Kuroshio Extension(KE) region. This long persistence may be strongly related to atmospheric forcing because the mixed layer is too shallow in the summer to be influenced by the anomalies at depths in the ocean. Changes in atmospheric circulation, latent heat flux, and longwave radiation flux all contribute to the long persistence of summer SSTAs. Among these factors, the longwave radiation flux has a dominant influence. The effects of sensible heat flux and shortwave radiation flux anomalies are not significant. The persistence of summer SSTAs displays pronounced interdecadal variability around the KE region, and the variability is very weak during 1950–82 but becomes stronger during 1983–2016. The changes in atmospheric circulation, latent heat flux, and longwave radiation flux are also responsible for this interdecadal variability because their forcings on the summer SSTAs are sustained for much longer after 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号