首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Toga tuff ring is a large, dissected tuff ring located on the modern shoreline of the Oga Peninsula, NE Japan. The crater measures 2 km by 2.4 km and the inner crater walls are inclined inward at 40–50° to form a funnel shape. Intra-crater beds are mainly composed of platy or blocky, non- to variably vesicular glass shards and pumice lapilli of K-rich rhyolite composition and dip inward at 10°–30° or less. A gravity model suggests they fill the downward-tapering conduit to a depth of 548 m below sea level. Fission-track dates from the intra-crater deposits indicate the age of the Toga tuff ring is ca. 420 ka, likely corresponding to a stage of global sea-level fall, MIS 12. Subsequent sea-level rise and marine transgression is inferred to have resulted in erosion of almost the entire outer tuff ring by post-eruptive wave action.The intra-crater deposit`s are exposed over a thickness of 50 m in the deeply incised crater floor. They comprise mainly monomictic tephra of phreatomagmatic origin and are similar in grain-size distribution and sedimentary structures to relatively high and low density turbidites, although the constituents, sparse block-sag structures, and multiple fluid-escape dikes suggest that they are the subaqueous equivalents of high- and low-density pyroclastic currents with similar grain-sizes and degree of grain-size sorting. Marine diatom frustules sparsely contained in the deposits suggest that the crater was likely open to the sea, enabling rapid access of seawater to the vent. Pyroclasts ejected through the water flowed back into the crater to form eruption-fed oscillatory or circular turbidity currents and were repeatedly recycled and variably abraded by subsequent explosions, while many juvenile pumice lapilli and ash grains were carried beyond the crater rim to form relatively dilute pyroclastic currents. The Toga example suggests that primary deposits emplaced in crater lakes are well sorted, graded and stratified with polymodal flow directions, sparse block-sags, and vesicular and fragile fragments that are more or less abraded by repeated explosions and recycling.  相似文献   

2.
The Mount Morgan Au-Cu pyritic sulphide deposit occurs in a north-northwest trending belt of Middle Paleozoic volcanic rocks located in south-central Queensland. This volcanic belt forms part of the Yarrol Basin in the Northern New England Fold Belt of the East Australian Tasman Geosyncline. The host rocks for the deposit are a normal sequence of rhyolitic and dacitic tuff that have a north-northwest regional strike and easterly dips of 20° to 30°. The tuff contains thin units of cert, jasperoid and carbonate rocks.  相似文献   

3.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

4.
A detailed 90,000-year tephrostratigraphic framework of Aso Volcano, southwestern Japan, has been constructed to understand the post-caldera eruptive history of the volcano. Post-caldera central cones were initiated soon after the last caldera-forming pyroclastic-flow eruption (90 ka), and have produced voluminous tephra and lava flows. The tephrostratigraphic sequence preserved above the caldera-forming stage deposits reaches a total thickness of 100 m near the eastern caldera rim. The sequence is composed mainly of mafic scoria-fall and ash-fall deposits but 36 silicic pumice-fall deposits are very useful key beds for correlation of the stratigraphic sequence. Explosive, silicic pumice-fall deposits that fell far beyond the caldera have occurred at intervals of about 2500 years in the post-caldera activity. Three pumice-fall deposits could be correlated with lava flows or an edifice in the western part of the central cones, although the other silicic tephra beds were erupted at unknown vents, which are probably buried by the younger products from the present central cones. Most of silicic eruptions produced deposits smaller than 0.1 km3, but bulk volumes of two silicic eruptions producing the Nojiri pumice (84 ka) and Kusasenrigahama pumice (Kpfa; 30 ka) were on the order of 1 km3 (VEI 5). The largest pyroclastic eruption occurred at the Kusasenrigahama crater about 30 ka. This catastrophic eruption began with a dacitic lava flow and thereafter produced Kpfa (2.2 km3). Total tephra volume in the past 90,000 years is estimated at about 18.1 km3 (dense rock equivalent: DRE), whereas total volume for edifices of the post-caldera central cones is calculated at about 112 km3, which is six times greater than the former. Therefore, the average magma discharge rate during the post-caldera stage of Aso Volcano is estimated at about 1.5 km3/ky, which is similar to the rates of other Quaternary volcanoes in Japan.  相似文献   

5.
The Cabo de Gata volcanic field of southeastern Spain contains several recently-recognized calderas. Some of the calderas are mineralized with epithermal gold, alunite, and base metal deposits, and others are barren, and yet they formed under generally similar conditions. Comparison of the magmatic, geochemical, and physical evolution of the Los Frailes, Rodalquilar, and Lomilla calderas provides insight into the processes of caldera evolution that led to precious-metal mineralization. The Los Frailes caldera formed at 14.4 Ma and is the oldest caldera. It formed in response to multiple eruptions of hornblende dacite magma. Following each eruption, the area collapsed and the caldera was invaded by the sea. Dacite domes fill the lower part of the caldera. Pyroxene andesites were erupted through the solidified core of the caldera and were probably initially responsible for magma generation. The Los Frailes caldera did not evolve to rhyolites nor was it subjected to the amount of structural development that the younger, mineralized Rodalquilar and Lomilla calderas were.  相似文献   

6.
Volcán Ceboruco, Mexico, erupted ~1,000 years ago, producing the Jala pumice and forming a ~4-km-wide caldera. During that eruption, 2.8 to 3.5 km3 of rhyodacite (~70 wt% SiO2) magma and 0.2 to 0.5 km3 of mixed dacite (~67 wt% SiO2) magma were tapped and deposited as the Jala pumice. Subsequently, the caldera was partially filled by extrusion of the Dos Equis dome, a low-silica (~64 wt% SiO2) dacite dome with a volume of ~1.3 km3. Petrographic evidence indicates that the Jala dacite and Dos Equis dacite originated largely through the mixing of three end-member magmas: (1) rhyodacite magma, (2) dacite magma, and (3) mafic magma. Linear least-squares modeling and detailed modal analysis indicate that the Jala dacite is predominantly a bimodal mixture of rhyodacite and dacite with a small additional mafic component, whereas the Dos Equis dacite is composed of mostly dacite mixed with subordinate amounts of rhyodacite and mafic magma. According to Fe–Ti oxide geothermometry, before the caldera-forming eruption the rhyodacite last equilibrated at ~865 °C, whereas the dacite was originally at ~890 °C but was heated to ~960 °C by intrusion of mafic magma as hot as ~1,030 °C. Zoning profiles in plagioclase and/or magnetite phenocrysts indicate that mixing between mafic and dacite magma occurred ~34–47 days prior to eruption, whereas subsequent mixing between rhyodacite and dacite magmas occurred only 1–4 days prior to eruption. Following the caldera-forming eruption, continued inputs of mafic magma led to effusion of the Dos Equis dome dacite. In this case, timing between mixing and eruption is estimated at ~93–185 days based on the thickness of plagioclase overgrowth rims.Editorial responsibility: T.L. Grove  相似文献   

7.
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life, represented by prominent biological evolution from the first appearance of soft-bodied animals from the late Neoproterozoic to the sudden diversification of animals with mineralized skeletons in the Cambrian. In South China several areas contain many fossils and are well exposed, suitable for the investigation of PC/C boundary. However, geochronological relationships are still poorly known because of lack of combined detailed investigations of internal structures of zircons and in-situ U–Pb dating.We focus on the internal structure of zircons from a tuff layer within Bed 5 in the Meishucun section on which we undertook cathodoluminescence (CL) imaging and in-situ U–Pb dating with LA-ICP-MS and nano-SIMS. Over 600 zircons from the tuff layer were classified into three types based on their CL images: oscillatory rims, inherited cores and dull structures. U–Pb dating of the internal structure of the zircons by LA-ICP-MS clearly shows a distinct unimodal age population dependent on the structure: 531 ± 17 Ma for the oscillatory rims and 515 Ma for the dull structures. The clear oscillatory zonation, the prismatic morphology, and their occurrence indicate that the oscillatory rims were formed from felsic magmatism, and that the U–Pb nano-SIMS age of 536.5 ± 2.5 Ma records the depositional age of the tuff. Our results indicate that the PC/C boundary is situated below Bed 5, and therefore the bottom of Zone 1 (Marker A) is more appropriate for the PC/C boundary than is the top of Zone 1 (Marker B). The age of a positive anomaly (P2) in the early Cambrian is estimated to be ca. 536 Ma.  相似文献   

8.
Microphenocrystic pyrrhotites were observed in the glassy groundmass of two dacite rocks from Satsuma-Iwojima, southwest Kyushu, Japan. It suggests that the dacite magma was saturated with respect to pyrrhotite at the time of eruption, and thus the sulfur contents in the groundmass can be taken as the solubility of sulfur in the dacite magma. The solubility of sulfur in the dacite rocks thus calculated is 65 to 72 ppm sulfur at the estimated conditions of T=900±50°C, and atm.  相似文献   

9.
Lascar Volcano (Atacama, Chile) erupted on 18–20 April 1993. Several sub-Plinian explosions occurred, and some were mushroom-shaped. The highest column rose up to 23 km. Ash clouds crossed South America eastwards. Dacite pumice falls made of blocks and ashes were deposited on the flanks of the volcano as a result of collapsed columns. The pumice contains phenocrysts of plagioclase, enstatite, augite, biotite, magnetite and ilmenite and small crystals of apatite. The 1992 previous andesite dome inside the crater was destroyed. Banded blocks resulting from mingling of the dacitic pumice and andesite from the dome are found in the pumice flow. Both the lava dome and the pumice are representative of the Lascar high-K magma unit. Dacitic pumice is a product of crystal fractionation of the andesitic magma.  相似文献   

10.
The most important deposit in the Plomosas–Rosario district, Sinaloa, is the vein tract named Plomositas–Plomosas–Los Arcos. These are NNW–SSE striking veins hosted in rocks of the Lower Volcanic Supergroup (LVS), and also in rocks at the bottom of the Upper Volcanic Supergroup (UVS). Both supergroups belong to the Sierra Madre Occidental. These veins evolved from an early intermediate sulfidation stage (1), rich in base metal sulfides, to a low sulfidation stage (2), rich in silver sulfides and sulfosalts. There is also a 45 m-wide stockwork with native silver and gold. Stage 1 is found in the deeper portion of the veins whereas stage 2 is found in the most shallow portion of the deposit. These stages record fluid inclusion salinities ranging from 7 to 12 wt.% NaCl equiv., and from 0.2 to 3.5 wt.% NaCl equiv., respectively. Homogenization temperatures range from 120 °C for surface samples to 200 °C at a depth of 320 m. The low homogenization temperatures recorded, and the dispersion of veins within host rocks as veinlets, suggest that this deposit formed at shallow depths and was probably blind.  相似文献   

11.
Burial depth, cumulative displacement, and peak temperature of frictional heat of a fault system are estimated by thermal analysis in the fold–thrust belt of the Western Foothills complex, western Taiwan based on the vitrinite reflectance technique. The regional thermal structure across the complex reveals that the rocks were exposed to maximum temperatures ranging from 100 °C to 180 °C, which corresponds to a burial depth of 3.7–6.7 km. A large thermal difference of 90 °C were observed at the Shuilikeng fault which make the eastern boundary of the fold–thrust belt where it is in contact with metamorphic rock of Hsuehshan Range. The large thermal difference corresponds to cumulative displacements on the Shuilikeng fault estimated to be in the range of 5.2–6.9 km. However, thermal differences in across the Shuangtung and Chelungpu faults cannot be determined apparently due to small vertical offsets. The large displacement observed across the Shuilikeng fault is absent at the other faults which are interpreted to be younger faults within the piggyback thrust system. Localized high temperatures adjacent to fault zones were observed in core samples penetrating the Chelungpu fault. Three major fracture zones were observed at core lengths of 225 m, 330 m, and 405 m and the two lower zones which comprise dark gray narrow shear zones. A value of vitrinite reflectance of 1.8%, higher than the background value of 0.8%, is limited at a narrow shear zone of 1 cm thickness at the fracture zone at 330 m. The estimated peak temperature in the range of 550–680 °C in the shear zone is far higher than the background temperature of 130 °C, and it is interpreted as due to frictional heating during seismic faulting.  相似文献   

12.
The Udo tuff cone of Cheju Island, South Korea, is a middle Pleistocene basalt tuff cone that has formed by early Surtseyan-type eruptions and later drier hydroclastic eruptions. The tuff cone comprises steep (20–30°) and planar beds of lapillistone, lapilli tuff and tuff that can be grouped into seven sedimentary facies (A-G). Facies A and B comprise continuous to lenticular layers of grain-supported and openwork lapillistone that are inversely graded and coarsen downslope. They suggest emplacement by grain flows that are maintained by gravity-induced stress and grain collisions. Facies C includes poorly sorted, crudely bedded and locally inversely graded lapilli tuff, also suggestive of rapid deposition from highly concentrated grain flows. Facies D includes thinly stratified and mantle-bedded tuff that was probably deposited by fallout of wind-borne ash. Other facies include massive lapilli tuff (Facies E), chaotic lapilli tuff (Facies F) and cross-bedded tuffaceous sandstone (Facies G) that were deposited by resedimentation processes such as debris flow, slide/slump and stream flow, respectively. The grain flows that produced Facies A, B and C are interpreted to have originated from falling pyroclasts, which initially generated highly dispersed, saltating avalanches, in which momentum was transferred by the particles themselves. This transport mechanism is similar to that of debris fall. As the slope gradient was too low to maintain a highly dispersed flow, the debris fall decelerated and contracted due to a decrease in dispersive pressure. The mode of momentum transfer changed to one of collision because contraction of the debris fall resulted in an increase in particle concentration. This transport mechanism is similar to that of common grain flows. Grain segregation occurred in several ways. Initial segregation of ash from lapilli occurred due to their differing terminal fall velocities, and their contrasting degrees of sliding friction with the bed. Percolation of ash into interstices of lapilli during flow (kinematic sieving) augmented further segregation of ash from lapilli. The latter process, along with a dispersive pressure effect, gave rise to vertical inverse size grading. Downdip inverse grading was produced by particle overpassing.  相似文献   

13.
The Rabaul caldera is at the northeastern tip of the island of New Britain, Papua New Guinea. Unwelded pumice flows and air fall pumice of andesite, dacite and rhyolite drape the caldera. They contain sparse phenocrysts of plagioclase, pyroxene and rarely amphibole, together with microphenocrysts of titanomagnetite and ilmenite; apatite and pyrrhotite are also present. The equilibration temperature of the iron-titanium oxides range from 1035° to 835° C. Estimates of sulphur fugacity are obtained from the composition of the pyrrhotites which contain about 1% Cu and 0.3% Mn. Calculations show that the fugacity of SO2 may be several tens of bars at 1000° C. An estimate of the activity coefficient of Fe3O4 in titanomagnetite was obtained, and within the limits of error, can be taken as unity in the temperature range 835–1035° C and the composition range 22. 6–42.5% ulvospinel. Calculations suggest that the phenocrysts of orthopyroxene and titanomagnetite in the rhyolitic pumice equilibrated at pressures (P total) of between 2.2 and 2.6 kilobars. Estimates of pH2o are unreliable because of the presumed later hydration of the pumice.  相似文献   

14.
D. Arcay  M.-P. Doin  E. Tric  R. Bousquet   《Tectonophysics》2007,441(1-4):27-45
At continental subduction initiation, the continental crust buoyancy may induce, first, a convergence slowdown, and second, a compressive stress increase that could lead to the forearc lithosphere rupture. Both processes could influence the slab surface PT conditions, favoring on one side crust partial melting or on the opposite the formation of ultra-high pressure/low temperature (UHP-LT) mineral. We quantify these two effects by performing numerical simulations of subduction. Water transfers are computed as a function of slab dehydration/overlying mantle hydration reactions, and a strength decrease is imposed for hydrated mantle rocks. The model starts with an old oceanic plate ( 100 Ma) subducting for 145.5 Myr with a 5 cm/yr convergence rate. The arc lithosphere is thermally thinned between 100 km and 310 km away from the trench, due to small-scale convection occuring in the water-saturated mantle wedge. We test the influence of convergence slowdown by carrying on subduction with a decreased convergence rate (≤ 2 cm/yr). Surprisingly, the subduction slowdown yields not only a strong slab warming at great depth (> 80 km), but also a significant cooling of the forearc lithosphere at shallower depth. The convergence slowdown increases the subducted crust temperature at 90 km depth to 705 ± 62 °C, depending on the convergence rate reduction, and might thus favor the oceanic crust partial melting in presence of water. For subduction velocities ≤ 1 cm/yr, slab breakoff is triggered 20–32 Myr after slowdown onset, due to a drastic slab thermal weakening in the vicinity of the interplate plane base. At last, the rupture of the weakened forearc is simulated by imposing in the thinnest part of the overlying lithosphere a dipping weakness plane. For convergence with rates ≥ 1 cm/yr, the thinned forearc first shortens, then starts subducting along the slab surface. The forearc lithosphere subduction stops the slab surface warming by hot asthenosphere corner flow, and decreases in a first stage the slab surface temperature to 630 ± 20 °C at 80 km depth, in agreement with PT range inferred from natural records of UHP-LT metamorphism. The subducted crust temperature is further reduced to 405 ± 10 °C for the crust directly buried below the subducting forearc. Such a cold thermal state at great depth has never been sampled in collision zones, suggesting that forearc subduction might not be always required to explain UHP-LT metamorphsim.  相似文献   

15.
Rocks exposed at Punta Cono include very fine-grained to coarse-grained tuffs, lapilli tuffs, and tuff breccias deposited in a deep marine environment. Syndepositional basaltic intrusive activity was common. In one locality a hyaloclastite-peperite complex formed. Slumped sections with fluidal basalt ‘clasts’, derived from intrusions that entered the sediment pile from below, are present elsewhere. Abundant soft-sediment folds in fine-grained laminated subaqueous fall-out tuff suggest steep gradients; these are cut by shallow channels filled with coarse-grained tuff, lapilli tuff, and rare tuff breccia. The combination of marine fossils, extreme textural immaturity, abundant slump features, and syndepositional magmatism indicates deposition upon the submarine flanks of an active volcano. Recognition of magma-wet sediment interaction is hampered in volcaniclastic rocks because of the similarity between host and intrusive fragments. Products of magma-water-sediment interactions at Punta Maria include: (1) jigsaw-puzzle hyaloclastite, formed by non-explosive hydroclastic fragmentation of magma upon contact with water and water-bearing sediment; (2) peperites, produced by mixing of magma with sediment; and (3) an unusual tuff breccia unit, the result of non-explosive mixing of ‘wisps’of lava with sediment during remobilization of an unconsolidated section. Low-explosivity magma-water-sediment interactions are favoured by relatively high hydrostatic pressures in sub-wave base settings.  相似文献   

16.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   

17.
L.I. Panina  L.M. Usoltseva 《Lithos》2008,103(3-4):431-444
To find out the reasons responsible for the diversity of igneous rocks forming the alkaline-ultrabasic carbonatite Krestovskiy massif (the Maimecha–Kotui province, Russia) we have studied melt inclusions in clinopyroxene of trachydolerites, porphyric melanephelinites, and tholeiites. It was established that the homogenization temperatures of inclusions in these rocks are rather close: 1140–1180 °C, 1190–1230 °C, and 1150–1210 °C, respectively. Compositions of melt inclusions in clinopyroxenes from different rocks are significantly different. The chemical composition of clinopyroxene of trachydolerites corresponds to that of trachybasalts and their derivatives. The inclusions are enriched in Sr, Ba, P, and S and their total sum of alkalies (at K ≥ Na) is never less than 5–6 wt.%. Inclusions from the rims of clinopyroxene phenocrysts in porphyric melanephelinites are similar in composition also to inclusions in trachydolerites. But in the cores of clinopyroxene phenocrysts the composition of inclusions corresponds to nephelinite melt. The composition of some melt inclusions in the intermediate and cores zones of clinopyroxene from porphyric melanephelinite has high SiO2 (53–55 wt.%), MgO (8–9 wt.%) and a low (1–2 wt.%) total sum of alkalies (at Na ≥ K) and is depleted in Al2O3 (6–7 wt.%), which is similar to the composition of basaltic komatiites. The composition of inclusions in tholeiites is also basic, highly magnesian, and low-alkaline, Sr and Ba are rare to absent. Compared to the inclusions of basaltic komatiite composition, the inclusions in tholeiites are enriched in Al and depleted in Ca, Ti, and P. The melts trapped in clinopyroxenes from different rocks contain low (0.014–0.018 wt.%) water but they are enriched in F: from 0.37 wt.% in nephelinite melts to 0.1–0.06 wt.% in tholeiite and basaltic komatiite melts. Inclusions in all the rocks under study, host clinopyroxene, and the rocks themselves are significantly enriched in incompatible elements (1–2 orders of magnitude relative to the mantle norm). In tholeiites, the partitioning of these elements is rather uniform, while in trachydolerites and especially in melanephelinites it is contrasting with a drastic depletion in HREE relative to LREE, MREE, and HFSE. A conclusion is made that the Krestovskiy massif was formed by no less than three mantle-derived magmas: melanephelinite, tholeiite and basaltic komatiite. Magmas were generated in different magma sources at different depths with various degrees of enrichment in incompatible elements. These magmas were, most likely, dominated by melanephelinite magma. In intermediate chambers this magma differentiated to form derivative melts of nephelinite, trachydolerite–trachyandesite–trachyte compositions. Komatiite-basalt melts were, most likely, derivatives of primitive meimechite magmas.  相似文献   

18.
The Glaramara tuff presents extensive exposures of the medial and distal deposits of a large tuff ring (original area >800 km2) that grew within an alluvial to lacustrine caldera basin. Detailed analysis and correlation of 21 sections through the tuff show that the eruption involved phreatomagmatic to magmatic explosions resulting from the interaction of dacitic magma and shallow-aquifer water. As the eruption developed to peak intensity, numerous, powerful single-surge pyroclastic density currents reached beyond 8 km from the vent, probably >12 km. The currents were strongly depletive and deposited coarse lapilli (>5 cm in diameter) up to 5 km from source, with only fine ash and accretionary lapilli deposited beyond this. As the eruption intensity waned, currents deposited fine ash and accretionary lapilli across both distal and medial regions. The simple wax–wane cycle of the eruption produced an overall upward coarsening to fining sequence of the vertical lithofacies succession together with a corresponding progradational to retrogradational succession of lithofacies relative to the vent. Various downcurrent facies transitions record transformations of the depositional flow-boundary zones as the depletive currents evolved with distance, in some cases transforming from granular fluid-based to fully dilute currents primarily as a result of loss of granular fluid by deposition. The tuff-ring deposits share several characteristics with (larger) ignimbrite sheets formed during Plinian eruptions and this underscores some overall similarities between pyroclastic density currents that form tuff rings and those that deposit large-volume ignimbrites. Tuff-ring explosive activity with such a wide area of impact is not commonly recognized, but it records the possibility of such currents and this should be factored into hazard assessments.  相似文献   

19.
The South Indian Craton is composed of low-grade and high-grade metamorphic rocks across different tectonic blocks between the Moyar–Bhavani and Palghat–Cauvery shear zones and an elongated belt of eastern margin of the peninsular shield. The Madras Block north of the Moyar–Bhavani shear zone, which evolved throughout the Precambrian period, mainly consists of high-grade metamorphic rocks. In order to constrain the evolution of the charnockitic region of the Pallavaram area in the Madras Block we have undertaken palaeomagnetic investigation at 12 sites. ChRM directions in 61 oriented block samples were investigated by Alternating Field (AF) and Thermal demagnetization. Titanomagnetite in Cation Deficient (CD) and Multi Domain (MD) states is the remanence carrier. The samples exhibit a ChRM with reverse magnetization of Dm = 148.1, Im = + 48.6 (K = 22.2, α95 = 9.0) and a palaeomagnetic pole at 37.5 °N, 295.6 °E (dp/dm = 7.8°/11.8°). This pole plots at a late Archaean location on the Indian Apparent Polar Wander Path (APWP) suggesting an age of magnetization in the Pallavaram charnockites as 2600 Ma. The nearby St. Thomas Mount charnockites indicate a period of emplacement at 1650 Ma (Mesoproterozoic). Thus the results of Madras Block granulites also reveal crustal evolution similar to those in the Eastern Ghats Belt with identical palaeopoles from both the areas.  相似文献   

20.
安徽巢湖早三叠世青龙组南陵湖段中的火山碎屑流沉积物,由火山碎屑岩组成,可分为英安 质角砾岩、英安质晶屑-玻屑凝灰角砾岩、英安质玻屑-晶屑凝灰岩和凝灰质灰岩四种岩石类型。沉积 层序分为两个旋回,包括Bouma序列的A—C、A—E段。层序分析表明,是介于近源和远源之间的过渡 相,属于斜坡沉积环境,物质来源于巢湖以南的浅海区火山喷发物质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号