首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
The Yarlung Zangbo River (YR) is the highest great river in the world, and its basin is one of the centers of human economic activity in Tibet. Using 10 meteorological stations over the YR basin in 1961–2005, the spatial and temporal characteristics of temperature and precipitation as well as potential evapotranspiration are analyzed. The results are as follows. (1) The annual and four seasonal mean air temperature shows statistically significant increasing trend, the tendency is more significant in winter and fall. The warming in Lhasa river basin is most significant. (2) The precipitation is decreasing from the 1960s to the 1980s and increasing since the 1980s. From 1961 to 2005, the annual and four seasonal mean precipitation is increasing but not statistically significant, especially in fall and spring. The increasing precipitation rates are more pronounced in Niyangqu and Palong Zangbo river basins, the closer to the upper YR is, the less precipitation increasing rate would be. (3) The annual and four seasonal mean potential evapotranspiration has decreased, especially after the 1980s, and most of it happens in winter and spring. The decreasing trend is most significant in the middle YR and Nianchu river basin. (4) Compared with the Mt. Qomolangma region, Tibetan Plateau, China and global average, the magnitudes of warming trend over the YR basin since the 1970s exceed those areas in the same period, and compared with the Tibetan Plateau, the magnitudes of precipitation increasing and potential evapotranspiration decreasing are larger, suggesting that the YR basin is one of the most sensitive areas to global warming.  相似文献   

2.
The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin.  相似文献   

3.
The distribution of winter-spring snow cover over the Tibetan Plateau(TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley(MLYRV) during 2003–2013 have been investigated with the moderate-resolution imaging spectrometer(MODIS) Terra data(MOD10A2) and precipitation observations. Results show that snow cover percentage(SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency(SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003–2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. The multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning, development and cessation of the rain belt in eastern China.  相似文献   

4.
Waterfront resources are important and special kind of natural resources in the marginal area between land and water.The Yangtze River,the longest river in China,is not only rich in waterfront resources,but also has favorable development conditions with great potentiality.Aided by large-scale underwater topographic map,the major factors of the waterfront resources in the middle and lower reaches of the Yangtze River,such as the stability,the water depth and the natural conditions for port construction,are assessed in this paper rspectively on the basis of the overall investigations.The results show that:(1)the waterfront resources are abundant in the middle and lower reaches of the Yangtze River,but lack of perfectly combined high grade waterfront;(2)there exists and obvious regional difference in the natural quality of the waterfront along the Yangtze;(3)the fore-bank water depth and waterfront stability are the main natural factors related to the waterfront auality in the middle and lower reaches of the Yangtze River;(4)the waterfronts along the Yangtze are mainly used for port,warehouse and industrial pruposes; and (5)the waterfronts near important cities are highly used,especially the high-quality waterfronts.In addition,some suggestions for the development and utilization of the waterfront resources are presented in this paper.  相似文献   

5.
Based on daily maximum and minimum temperature observed by the China Meteorological Administration at 115 meteorological stations in the Yangtze River Basin from 1962 to 2011,the methods of linear regression,principal component analysis and correlation analysis are employed to investigate the temporal variability and spatial distribution of temperature extremes.Sixteen indices of extreme temperature are selected.The results are as follows:(1) The occurrence of cold days,cold nights,ice days,frost days and cold spell duration indicator has significantly decreased by –0.84,–2.78,–0.48,–3.29 and –0.67 days per decade,respectively.While the occurrence of warm days,warm nights,summer days,tropical nights,warm spell duration indicator and growing season length shows statistically significant increasing trends at rates of 2.24,2.86,2.93,1.80,0.83 and 2.30 days per decade,respectively.The tendency rate of the coldest day,coldest night,warmest day,warmest night and diurnal temperature range is 0.33,0.47,0.16,0.19 and –0.07℃ per decade,respectively.(2) The magnitudes of changes in cold indices(cold nights,coldest day and coldest night) are obviously greater than those of warm indices(warm nights,warmest day and warmest night).The change ranges of night indices(warm nights and cold nights) are larger than those of day indices(warm days and cold days),which indicates that the change of day and night temperature is asymmetrical.(3) Spatially,the regionally averaged values of cold indices in the upper reaches of the Yangtze River Basin are larger than those in the middle and lower reaches.However,the regionally averaged values of most warm indices(except warm spell duration indicator) and growing season length in the middle and lower reaches are larger than those in the upper reaches.(4) The extreme temperature indices are well correlated with each other except diurnal temperature range.  相似文献   

6.
WenWen Wang 《寒旱区科学》2013,5(2):0240-0250
Based on daily maximum and minimum surface air temperature and precipitation records at 48 meteorological stations in Xinjiang, the spatial and temporal distributions of climate extreme indices have been analyzed during 1961-2008. Twelve temperature extreme indices and six precipitation extreme indices are studied. Temperature extremes are highly correlated to annual mean temperature, which appears to be significantly increasing by 0.08 °C per year, indicating that changes in temperature extremes reflect consistent warming. The warming tendency is clearer at stations in northern Xinjiang as reflected by mean temperature. The frequencies of cold days and nights have both decreased, respectively by 0.86 and 2.45 d/decade, but the frequencies of warm days and nights have both increased, respectively by +1.62 and +4.85 d/decade. Over the same period, the number of frost days shows a statistically significant decreasing trend of 2.54 d/decade. The growing season length and the number of summer days exhibit significant increasing trends at rates of +2.62 and +2.86 d/decade, respectively. The diurnal temperature range has decreased by 0.28 °C/decade. Both annual extreme low and high temperatures exhibit significant increasing trend, with the former clearly larger than the latter. For precipitation indices, regional annual total precipitation shows an increasing trend and most other precipitation indices are strongly correlated with annual total precipitation. Average wet day precipitation, maximum 1-day and 5-day precipitation, and heavy precipitation days show increasing trends, but only the last is statistically significant. A decreasing trend is found for consecutive dry days. For all precipitation indices, stations in northwestern Xinjiang have the largest positive trend magnitudes, while stations in northern Xinjiang have the largest negative magnitudes.  相似文献   

7.
华北平原降水的长期趋势分析(英文)   总被引:4,自引:1,他引:3  
The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of changing trends in precipitation. This study, based on daily precipitation data from 47 representative stations in NCP records passed the homogeneity test, analyzed the trend and amplitude of variation in monthly, seasonal and annual precipitation, annual maximum continuous no-rain days, annual rain days, rainfall intensity, and rainfall extremes from 1960 to 2007, using the MannKendall (M-K) test and Sen’s slope estimator. It was found that monthly precipitation in winter had a significant increasing trend in most parts, while monthly precipitation in July to September showed a decreasing trend in some parts of NCP. No significant changing trend was found for the annual, dry and wet season precipitation and rainfall extremes in the majority of NCP.A significant decreasing trend was detected for the maximum no-rain duration and annual rain days in the major part of NCP. It was concluded that the changing trend of precipitation in NCP had an apparent seasonal and regional pattern, i.e., precipitation showed an obvious increasing trend in winter, but a decreasing trend in the rainy season (July to September), and the changing trend was more apparent in the northern part than in the southern and middle parts. This implies that with global warming, seasonal variation of precipitation in NCP tends to decline with an increasing of precipitation in winter season, and a decreasing in rainy season, particularly in the sub-humid northern part.  相似文献   

8.
Based on daily maximum and minimum temperature observed by the China Mete- orological Administration at 115 meteorological stations in the Yangtze River Basin from 1962 to 2011, the methods of linear regression, principal component analysis and correlation analysis are employed to investigate the temporal variability and spatial distribution of tem- perature extremes. Sixteen indices of extreme temperature are selected. The results are as follows: (1) The occurrence of cold days, cold nights, ice days, frost days and cold spell du- ration indicator has significantly decreased by -0.84, -2.78, -0.48, -3.29 and -0.67 days per decade, respectively. While the occurrence of warm days, warm nights, summer days, tropi- cal nights, warm spell duration indicator and growing season length shows statistically sig- nificant increasing trends at rates of 2.24, 2.86, 2.93, 1.80, 0.83 and 2.30 days per decade, respectively. The tendency rate of the coldest day, coldest night, warmest day, warmest night and diurnal temperature range is 0.33, 0.47, 0.16, 0.19 and -0.07~C per decade, respectively (2) The magnitudes of changes in cold indices (cold nights, coldest day and coldest night) are obviously greater than those of warm indices (warm nights, warmest day and warmest night). The change ranges of night indices (warm nights and cold nights) are larger than those of day indices (warm days and cold days), which indicates that the change of day and night tem- perature is asymmetrical. (3) Spatially, the regionally averaged values of cold indices in the upper reaches of the Yangtze River Basin are larger than those in the middle and lower reaches. However, the regionally averaged values of most warm indices (except warm spell duration indicator) and growing season length in the middle and lower reaches are larger than those in the upper reaches. (4) The extreme temperature indices are well correlated with each other except diurnal temperature range.  相似文献   

9.
Alluvial channel has always adjusted itself to the equilibrium state of sediment transport after it was artificially or naturally disturbed.How to maintain the equilibrium state of sediment transport and keep the river regime stable has always been the concerns of fluvial geomorphologists.The channel in the middle and lower reaches of the Yangtze River is characterized by the staggered distribution of the bifurcated river and the single-thread river.The change of river regime is more violently in the bifurcated river than in the single-thread river.Whether the adjustment of the river regime in the bifurcated river can pass through the single-thread river and propagate to the downstream reaches affects the stabilities of the overall river regime.Studies show that the barrier river reach can block the upstream channel adjustment from propagating to the downstream reaches;therefore,it plays a key role in stabilizing the river regime.This study investigates 34 single-thread river reaches in the middle and lower reaches of the Yangtze River.On the basis of the systematic summarization of the fluvial process of the middle and lower reaches of the Yangtze River,the control factors of barrier river reach are summarized and extracted:the planar morphology of single-thread and meandering;with no flow deflecting node distributed in the upper or middle part of the river reach;the hydraulic geometric coefficient is less than 4;the longitudinal gradient is greater than 12‰,the clay content of the concave bank is greater than 9.5%,and the median diameter of the bed sediment is greater than 0.158 mm.From the Navier-Stokes equation,the calculation formula of the bending radius of flow dynamic axis is deduced,and then the roles of these control factors on restricting the migration of the flow dynamic axis and the formation of the barrier river reach are analyzed.The barrier river reach is considered as such when the ratio of the migration force of the flow dynamic axis to the constraint force of the channel boundary is less than 1 under different flow levels.The mechanism of the barrier river reach is such that even when the upstream river regime adjusts,the channel boundary of this reach can always constrain the migration amplitude of the flow dynamic axis and centralize the planar position of the main stream line under different upstream river regime conditions,providing a relatively stable incoming flow conditions for the downstream reaches,thereby blocking the upstream river regime adjustment from propagating to the downstream reaches.  相似文献   

10.
长江中游马口-田家镇河段40年来河道演变   总被引:2,自引:1,他引:1  
Quantitative analysis was performed on the filling-scouring process for the river reach within Makou and Tianjiazhen, the middle Yangtze River with the help of GIS and DEM techniques. The research results indicate that the river reach between Makou and Tianjiazhen was dominated by the scouring process, and the magnitude of scouring is increasing over time. The intensity of scouring process is more in the deep and narrower river reach than shallower and wider ones. The river reach in the Makou and Tianjiazhen river knot is in fre-quent scouring and filling process, however the river reach upper to the Makou and lower to the Tianjiazhen river knot is in moderate scouring and filling process. The river reach just upstream or downstream to the river knot (e.g. Makou and Tianjiazhen river knot in this research) is dominated by filling process and the river reach in the river knot is dominated by the scouring process. Research results indicate no changes in the boundary of the river but the scouring and the filling magnitude in specific river channel is strong. The filling and the scouring process of the study river reach is greatly impacted by the sediments and water from the upstream of the study river reach. The construction of the Three Gorges Dam just upstream to Yichang will cause further decrease of the release of the sediment load to the middle and the lower Yangtze River basin, which will further intensify the scouring process of the river channel in the study river reach.  相似文献   

11.
The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.  相似文献   

12.
鄱阳湖流域水文变化特征成因及旱涝规律   总被引:9,自引:2,他引:7  
郭华  张奇  王艳君 《地理学报》2012,67(5):699-709
本研究分析了1960-2008年鄱阳湖流域的气候和水文变化特征,用水量和能量平衡关系解释和印证了这些特征,并由此揭示了鄱阳湖流域水文变化特征的成因及干旱和洪涝发生的规律.得到以下主要结论:1)正常或偏湿年份鄱阳湖流域6月份容纳水量能力已达到饱和,若6-7月降水量超出正常年份,则流域超饱和,洪涝发生.长江中上游降水量7月份的异常偏多会对鄱阳湖流域的洪涝起触发和强化作用.2)鄱阳湖流域7-10月蒸发量大于降水量,特别是7-8月蒸发量大于降水量的一倍以上,所以若4-6月流域降水量少于平均年同期量的20%以上,则累积效应使秋旱发生.当初冬(11月)降水偏少时,秋旱可持续到来年的初春,形成严重的春旱.长江中上游降水量对鄱阳湖流域的春旱没有直接影响,但7-8月降水量偏少时则对秋旱起重要的强化作用.3)长江对鄱阳湖流域的水文过程和旱涝的发生、发展的影响主要在7-8月的“长江与鄱阳湖耦合作用”时期和9-10月的“弱长江作用”期.  相似文献   

13.
The suspected impact of climate warming on precipitation distribution is examined in the Yangtze River Basin. Daily precipitation data for 147 meteorological stations from 1961–2000 and monthly discharge data for three stations in the basin have been analyzed for temporal and spatial trends. The methods used include the Mann–Kendall test and simple regression analysis. The results show (1) a significant positive trend in summer precipitation at many stations especially for June and July, with the summer precipitation maxima in the middle and lower Yangtze River basin in the 1990s; (2) a positive trend in rainstorm frequency that is the main contributor to increased summer precipitation in the basin; and (3) a significant positive trend in flood discharges in the middle and lower basin related to the spatial patterns and temporal trends of both precipitation and individual rainstorms in the last 40 years. The rainstorms have aggravated floods in the middle and lower Yangtze River Basin in recent decades. The observed trends in precipitation and rainstorms are possibly caused by variations of atmospheric circulation (weakened summer monsoon) under climate warming.  相似文献   

14.
石羊河流域1961-2005年蒸发皿蒸发量变化趋势及原因初探   总被引:4,自引:0,他引:4  
 利用1961—2005年石羊河流域上、中、下游当地气象站的逐月20 cm口径蒸发皿蒸发量、平均气温、平均相对湿度、降水量、平均风速、日照时数、最高气温和最低气温资料,研究了近45 a石羊河流域蒸发皿蒸发量变化趋势及原因。结果表明,45 a来,石羊河流域及上、下游年蒸发皿蒸发量呈上升趋势,中游年蒸发皿蒸发量呈下降趋势,上游上升趋势最明显。四季中,春、秋、冬季蒸发皿蒸发量呈上升趋势,上升最明显的是冬季,其次为秋季,春季变化不明显,夏季蒸发皿蒸发量变化呈下降趋势。石羊河流域在不同时段不同区域年蒸发皿蒸发量都存在明显的6~7 a周期和1~2 a的短周期,并都发生了突变。相关系数法分析表明,影响石羊河流域及中、下游年蒸发皿蒸发量变化的主要影响因子是相对湿度和降水,上游的主要影响因子是相对湿度和气温。四季中,春季的主要影响因子是相对湿度和降水;夏季影响石羊河流域及上、中蒸发皿蒸发量变化的主要因子是相对湿度和气温,下游的主要影响因子是相对湿度和降水;秋季影响石羊河流域及中、下游蒸发皿蒸发量变化的主要影响因子是相对湿度和气温日较差,上游其主要影响因子是相对湿度和降水;冬季的主要影响因子是气温和相对湿度。影响年以及春、夏、秋最显著的因子是相对湿度,冬季最显著的影响因子是气温。  相似文献   

15.
The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indi-cated that: 1) Spatial distribution of R1D is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at >95% confidence level in Jialingjiang River basin and insignificant at >95% con-fidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of R1D extreme precipitation at >95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at >95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at >95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at >95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Pre-cipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies be-tween 1993–2002 and 1961–1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River  相似文献   

16.
实施流域生态管理的长江中下游湿地保护探讨   总被引:4,自引:1,他引:4  
长江中下游地区湿地分布广泛且类型多样,是我国淡水湖泊分布最集中和最具有代表性的地区。为了从根本上解决长江中下游湿地利用面临的问题,实现湿地资源的可持续利用,保护湿地环境,解决区内上、下游用水的供需矛盾,实现水资源的优化配置,调动区域湿地保护的积极性和主动性,有必要遵循湿地流域分布规律,应用流域生态学最新理论与实践成果,进行流域生态管理。一方面,要从流域角度处理好几大江湖关系、蓄泄关系、湖垸关系和山湖(河)关系等;另一方面,在流域内建立统一协调机制,对流域湿地进行保护与合理利用、合理布局和统一规划;同时在保护的前提下,科学合理地利用长江中下游湿地资源,开拓新的生产力。  相似文献   

17.
1962-2011年长江流域极端气温事件分析   总被引:15,自引:1,他引:14  
根据1962-2011 年长江流域115 个气象站点的逐日最高气温、日最低气温资料,利用线性倾向估计法、主成分分析及相关分析法,并根据选取的16 个极端气温指标,分析了该地区极端气温的时间变化趋势和空间分布规律。结果表明:(1) 冷昼日数、冷夜日数、冰冻日数、霜冻日数、冷持续日数分别以-0.84、-2.78、-0.48、-3.29、-0.67 d·(10a)-1的趋势减小,而暖昼日数、暖夜日数、夏季日数、热夜日数、暖持续日数、生物生长季以2.24、2.86、2.93、1.80、0.83 、2.30 d·(10a)-1的趋势增加,日最高(低) 气温的极低值、日最高(低) 气温的极高值和极端气温日较差的倾向率分别为0.33、0.47、0.16、0.19、-0.07 ℃·(10a)-1;(2) 冷指数(冷夜日数、日最高气温的极低值、日最低气温的极低值)的变暖幅度明显大于暖指数(暖夜日数、日最高气温的极高值、日最低气温的极高值),夜指数(暖夜日数、冷夜日数) 的变暖幅度明显大于昼指数(暖昼日数、冷昼日数);(3) 空间分布上,长江上游区域冷指数的平均值大于其中下游区域,而暖指数和生物生长季则是中下游多年平均值大于上游区域(暖持续日数除外);(4) 因子分析的结果表明,除了极端气温日较差之外,各极端气温指数之间均呈现很好的相关性。  相似文献   

18.
1961-2016年渭河流域极端降水事件研究   总被引:1,自引:1,他引:0  
周旗  张海宁  任源鑫 《地理科学》2020,40(5):833-841
基于1961-2016 年渭河流域26 个气象站点的逐日降水数据,选取与极端降水事件密切相关的9 个指数,利用线性趋势法、Mann-Kendall突变点检验和方差分析等方法,揭示渭河流域极端降水事件的变化趋势、突变情况以及渭河流域上、中、下游降水情况的差异特征,对研究区未来极端降水事件提供科学预测和理论参考。结果表明:渭河流域上、中、下游地区及整个流域的年总降水量分别以16.588 mm/10a、8.319 mm/10a、6.703 mm/10a和9.544 mm/10a的速率下降,表明渭河流域56 a来降水总量存在逐年减少的趋势,整个渭河流域地区呈现变干的趋势。降水强度(SDII)、强降水总量(R95PTOT)和极端降水总量(R99PTOT)在整体上均呈现上升趋势,极端降水总量的上升趋势高于强降水总量,上游地区的上升趋势高于中下游地区,表明渭河流域极端降水强度有所增强,极端降水事件发生频率有所增大。渭河流域出现极端降水事件的年份集中在20世纪90年代和21世纪初期,且降水情况的年际差异较大,中游地区的变化更为明显。相关分析显示中下游地区对整个流域极端降水事件的发生情况起到较大的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号