首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The turning bands method (TBM) generates realizations of isotropic Gaussian random fields by summing contributions from line processes. We consider two-dimensional simulations and study the correlation bias attributable to the use of only a finite number L of lines. Our analytical and numerical results confirm that the maximal bias is of order 1/L, and that L = 64 lines suffice for excellent covariance reproduction. The notorious banding observed in simulations with an insufficient number of lines is a related but different phenomenon and depends strongly on the choice of the line simulation technique. Clear-cut recommendations for the number of lines necessary to avoid the effect can only be based on practical experience with the specific code at hand.  相似文献   

2.
均质弹性地基中单桩的扭转振动特性研究   总被引:3,自引:0,他引:3  
王国才  王哲  陈龙珠  黄晋 《岩土力学》2008,29(11):3027-3031
利用积分方程的方法研究了均质弹性地基中单桩的扭转振动问题。在分析过程中,首先利用积分变换的方法得出均质弹性地基内作用一埋置扭矩时的基本解。基于基本解,根据变形协调条件建立了控制单桩扭转振动特性的第2类Fredholm积分方程。对所得积分方程进行数值求解得到单桩扭转振动时的扭矩和扭转角及动力柔度系数,并对其进行了参数分析。所得结论对桩基础设计与计算以及桩基低应变扭转波动测技术有一定的指导意义。  相似文献   

3.
The Biot linearized theory of fluid saturated porous materials is used to study the plane strain deformation of a two-phase medium consisting of a homogeneous, isotropic, poroelastic half-space in welded contact with a homogeneous, isotropic, perfectly elastic half-space caused by a two-dimensional source in the elastic half-space. The integral expressions for the displacements and stresses in the two half-spaces in welded contact are obtained from the corresponding expressions for an unbounded elastic medium by applying suitable boundary conditions at the interface. The case of a long dip-slip fault is discussed in detail. The integrals for this source are solved analytically for two limiting cases: (i) undrained conditions in the high frequency limit, and (ii) steady state drained conditions as the frequency approaches zero. It has been verified that the solution for the drained case (ω → 0) coincides with the known elastic solution. The drained and undrained displacements and stresses are compared graphically. Diffusion of the pore pressure with time is also studied.  相似文献   

4.
This paper is concerned with vector random fields on spheres with second-order increments, which are intrinsically stationary and mean square continuous and have isotropic variogram matrix functions. A characterization of the continuous and isotropic variogram matrix function on a sphere is derived, in terms of an infinite sum of the products of positive definite matrices and ultraspherical polynomials. It is valid for Gaussian or elliptically contoured vector random fields, but may not be valid for other non-Gaussian vector random fields on spheres such as a χ 2, log-Gaussian, or skew-Gaussian vector random field. Some parametric variogram matrix models are derived on spheres via different constructional approaches. A simulation study is conducted to illustrate the implementation of the proposed model in estimation and cokriging, whose performance is compared with that using the linear model of coregionalization.  相似文献   

5.
Average nonuniform flows in heterogeneous formations are modeled with the aid of the nonlocal effective Darcy's law. The mean head for flow toward source of instantaneous discharge in a heterogeneous medium of given statistics represents the fundamental solution of the average flow equation and is called the Mean Green Function (MGF). The general representation of the MGF is obtained for weakly heterogeneous formations as a functional of the logconductivity correlation function. For Gaussian logconductivity correlation, the MGF is derived in terms of one quadrature in time t and it is analyzed for isotropic media of any dimensionality d and for 3D axisymmetric formations. The MGF is further applied to determining the mean head distribution for flow driven by a continuous source of constant discharge. The large time asymptotic of the mean head is analyzed in details.  相似文献   

6.
L. Margerin   《Tectonophysics》2006,416(1-4):229
Most theoretical investigations of seismic wave scattering rely on the assumption that the underlying medium is statistically isotropic. However, deep seismic soundings of the crust as well as geological observations often reveal the existence of elongated or preferentially oriented scattering structures. In this paper, we develop mean field and radiative transfer theories to describe the attenuation and multiple scattering of a scalar wavefield in an anisotropic random medium. The scattering mean free path is found to depend strongly on the propagation direction. We derive a radiative transfer equation for statistically anisotropic random media from the Bethe–Salpeter formalism and propose a Monte Carlo method to solve this equation numerically. At longer times, the energy density is shown to obey a tensorial diffusion equation. The components of the diffusion tensor are obtained in closed form and excellent agreement is found between Monte Carlo simulations and analytical solutions of the diffusion equation. The theory has important potential implications for lithospheric models where scatterers are for example flat structures preferentially aligned along the surface. In this simple geometry, analytical expressions of the Coda Q parameter can be given explicitly in the diffusive regime. Our results suggest that pulse broadening and coda decay are controlled by different parameters, related to the eigenvalues of the diffusion tensor. These eigenvalues can differ by more than one order of magnitude. This theory could be applied to probe the anisotropy of length scales in the lithosphere.  相似文献   

7.
A model of a multivariate covariance function with an ellipsoidal directional correlation scale has been developed. The axes of the ellipsoidal scale are related to the eigenvalues and eigenvectors of a matrix B which characterizes the ellipsoid of the range of influence. The matrix B is found to be related to a matrix T which can be estimated directly from sparse sampling data and can be used to determine estimates of the matrix B. The method has been applied to both two-dimensional and three-dimensional cases. The numerical results show that the satisfactory accuracy is obtained with sparse sampling data from an anisotropic random function.  相似文献   

8.
Using rigorous probabilistic techniques we define and compute the shadowing factor, the conditional mean slope and the conditional standard deviation of the slope for a random rough surface described as an isotropic Gaussian stochastic process with Gaussian autocorrelation function. We use these quantities in order to obtain the bidirectional reflectance distribution function for incoherent light scattering by rough surfaces. The calculated quantities depend on reduced, affine invariant parameters, such that changing roughness is equivalent to rescaling the slopes of incident and emergent direction. We discuss some possible applications of these scaling properties to remote sensing.  相似文献   

9.
用线性预测理论研究地震中长期预报   总被引:1,自引:0,他引:1       下载免费PDF全文
引言长期以来,人们十分注重对地震的时间、空间序列进行研究,以探索地震发生的规律和进行预报。过去相当多的工作讨论了地震的周期性,地震在空间分布上的填空性及迁移规律问题。引入现代统计方法研究地震的时空序列,就有可能在更一般的条件下对原因和过程都尚未清楚的地震事件进行统计分析,概括出某些数学模型进行外推预测。  相似文献   

10.
In the framework of elastostatics, a mathematical treatment is presented for the boundary value problem of the interaction of a flexible cylindrical pile embedded in a transversely isotropic half‐space under transverse loadings. Taking the pile region as a stiffened subdomain of an extended half‐space, the formulation of the interaction problem is reduced to a Fredholm integral equation of the second kind. The necessary set of Green's functions for the transversely isotropic half‐space is obtained by means of a method of potentials. The resulting Green's functions are incorporated into a numerical procedure for the solution of the integral equation. The theoretical response of the pile is presented in terms of bending moment, displacement and slope profiles for a variety of transversely isotropic materials so that the effect of different anisotropy parameters can be meaningfully discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, forced rocking vibration of a rigid circular disc placed in a transversely isotropic full‐space, where the axis of material symmetry of the full‐space is normal to the surface of the plate, is analytically investigated. Because of using the Fourier series and Hankel integral transforms, the mixed boundary‐value problem is transformed into two separate pairs of integral equations called dual integral equations. The dual integral equations involved in this paper are reduced to Fredholm integral equations of the second kind. With the aid of contour integration, the governing integral equation is numerically evaluated in the general dynamic case. The reduced static case of the dual integral equations is solved analytically and the vertical displacement, the contact pressure and the static impedance/compliance function are explicitly determined, and it is shown that the pressure in between the plate and the full‐space and the compliance function reduced for isotropic half‐space are identical to the previously published solutions. The dynamic contact pressure in between the disc and the space and also the related impedance function are numerically evaluated in general dynamic case and illustrated. It is shown that the singularity exists in the contact pressure at the edge of the disc is the same as the static case. To show the effect of material anisotropy, the numerical evaluations are given for some different transversely isotropic materials and compared. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Isotropic covariance functions are successfully used to model spatial continuity in a multitude of scientific disciplines. Nevertheless, a satisfactory characterization of the class of permissible isotropic covariance models has been missing. The intention of this note is to review, complete, and extend the existing literature on the problem. As it turns out, a famous conjecture of Schoenberg (1938) holds true: any measurable, isotropic covariance function on d (d 2) admits a decomposition as the sum of a pure nugget effect and a continuous covariance function. Moreover, any measurable, isotropic covariance function defined on a ball in d can be extended to an isotropic covariance function defined on the entire space d .  相似文献   

13.
Abstract The calculations of unsteady flow to a multiple well system with the application of boundary element method (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem of parabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time variable. The image function of water head H can be solved by BEM. We derived the boundary integral equation of the transformed variable H and the discretization form of it, so that there is no need to discretize the boundaries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.  相似文献   

14.
Based on the Biot's poroelastic theory and using scalar potential functions both the ring load and point load displacement Green's functions for a transversely isotropic saturated porous full‐space composed of an upper half‐space, a finite thickness middle layer and a lower half‐space is analytically presented for the first time. It is assumed that each region consists of a different transversely isotropic material. The equations of poroelastodymanics in terms of the solid displacements and the pore fluid pressure are uncoupled with the help of two scalar potential functions, so that the governing equations for the potential functions are either a second order wave equation or a repeated wave‐heat transfer equation of sixth order. With the aid of Fourier expansion with respect to circumferential direction and Hankel integral transforms with respect to the radial direction in cylindrical coordinate system, the response is determined in the form of line integrals in the real space, followed by theorem of inverse Hankel integral transforms. The solutions degenerate to a single phase elastic material, and the results are compared with previous studies, where an excellent agreement may be observed with the results provided in the literature. Some examples of displacement Green's functions are finally given to illustrate the solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A new power–law function has been derived to represent the relationship between area of the set consisting of wave numbers with spectral energy density above S (A(>S)) on the two-dimensional frequency plane and S. The power–law relation holds if the field concerned possessing isotropic scale invariance or generalized scaling invariance involves rotational and ratio-scale changing transforms. The equation is valid for dealing with common exploration geophysical and geochemical fields encountered in mineral exploration and environmental assessment. This power–law function not only provides a new model for characterizing anisotropic scaling invariance for generalized scaling field, for example, estimating the power exponent of power spectrum of generalized scale invariance measure in frequency domain, but also forms a theoretical base for the S–A filtering technique developed for decomposing a mixing field into components on the basis of distinct scaling properties in the frequency domain. It is demonstrated that the method has potential to become a general technique for image processing and pattern recognition.  相似文献   

16.
This paper analyzes the emergence of channeling and preferential flow in heterogeneous porous media. Connectivity is studied through the statistical characterization of the length L of connected, high velocity patterns in both two-dimensional and three-dimensional media. A simple, physically based, fully analytic expression for the probability of L has been derived. It is found that the length L of connected, high velocity channels is flow-related and can be much larger than the conductivity integral scale I. Heterogeneity has a considerable impact on emergence of channeling patterns; connectivity is considerably enhanced in three-dimensional structures as compared to two-dimensional ones. The strong dependence on space dimensionality is a warning against the use of two-dimensional numerical models for assessing connectivity and preferential flow in heterogeneous media. The probability p(L) is employed in order to determine the early arrivals of the breakthrough curve at a given control plane; the simple model can be used for a preliminary assessment of preferential flow. Comparison with numerical simulations confirms that the main connectivity features were adequately captured by the model.  相似文献   

17.
Compound Poisson process models have been studied earlier for earthquake occurrences, with some arbitrary compounding distributions. It is more meaningful to abstract information about the compounding distribution from the empirical observations on the earthquake sequences. The difinition of a compound distribution can be interpreted as an integral transform of the compounding distribution. The latter distribution can therefore be estimated by inverting the integral transform. Alternatively, from the moments of the observable random variablesviz. (a) the number of earthquakes per unit time or (b) the waiting times for subsequent earthquakes, the moments of the compounding distribution can be obtained. This information can be converted into a statement about the compounding distribution.  相似文献   

18.
李树忱  周锦添  李术才 《岩土力学》2007,28(12):2549-2552
目前隧道及大型地下工程往往在裂隙岩体中开挖,而裂隙与地下空间的距离及裂隙的扩展条件,制约着隧道及地下工程的稳定性。应用能考虑孔洞和裂纹问题的新型边界积分方程与无网格加辽金法结合,建立一种新型的边界无单元法。在该方法中基本的未知量是由边界上的面力和边界上位移密度函数构成的复变量边界函数 。文中应用的边界积分公式和Muskhelishvili的积分公式直接相关。将无网格构造方法引入新型的边界积分方程,建立了新型的边界无单元法。应用该方法详细分析了含隧道和裂纹间相互关系等问题,其数值结果与解析结果吻合很好,说明该方法的正确性和可行性。  相似文献   

19.
This work presents analytical solutions for displacements caused by three‐dimensional point loads in a transversely isotropic full space, in which transversely isotropic planes are inclined with respect to the horizontal loading surface. In the derivation, the triple Fourier transforms are employed toyield integral expressions of Green's displacement; then, the triple inverse Fourier transforms and residue calculus are performed to integrate the contours. The solutions herein indicate that the displacements are governed by (1) the rotation of the transversely isotropic planes (?), (2) the type and degree of material anisotropy (E/E′, ν/ν′, G/G′), (3) the geometric position (r, φ, ξ) and (4) the types of loading (Px, Py, Pz). The solutions are identical to those of Liao and Wang (Int. J. Numer. Anal. Methods Geomechanics 1998; 22 (6):425–447) if the full space is homogeneous and linearly elastic and the transversely isotropic planes are parallel to the horizontal surface. Additionally, a series of parametric study is conducted to demonstrate the presented solutions, and to elucidate the effect of the aforementioned factors on the displacements. The results demonstrate that the displacements in the infinite isotropic/transversely isotropic rocks, subjected to three‐dimensional point loads could be easily determined using the proposed solutions. Also, these solutions could realistically imitate the actual stratum of loading situations in numerous areas of engineering. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
An analytical solution is presented in this paper to study the time‐dependent settlement behaviour of a rigid foundation resting on a transversely isotropic saturated soil layer. The governing equations for a transversely isotropic saturated soil, within Biot's poroelasticity framework, are solved by means of Laplace and Hankel transforms. The problem is subsequently formulated in the Laplace transform domain in terms of a set of dual integral equations that are further reduced to a Fredholm integral equation of the second kind and solved numerically. The developed analytical solution is validated via comparison with the existing analytical solution for an isotropic saturated soil case, and adopted as a benchmark to examine the sensitivities of the mesh refinement and the locations of truncation boundaries in the finite element simulations using ABAQUS. Particular attention is paid to the influences of the degree of soil anisotropy, boundary drainage condition, and the soil layer thickness on the consolidation settlement and contact stress of the rigid foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号