首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2014年汛期气候预测先兆信号应用及其复杂性初探   总被引:2,自引:2,他引:0  
孙林海  宋文玲  龚振淞 《气象》2015,41(5):639-648
文章系统回顾了2014年汛期气候预测的主要先兆信号。其信号特征是:2014年前期赤道中东太平洋由呈正常略偏冷向偏暖状态发展,预计可能在夏季形成一次暖事件,冬季格陵兰海冰偏多、青藏高原积雪正常略偏多,这些特征对后期东亚夏季风有明显影响。通过对前期先兆信号的分析,预测了2014年我国夏季雨带位置偏北,但较2013年偏南,主要多雨区位于华北南部至江淮。从实况和预报的对比来看,夏季主雨带预测与实况有较大差异,没有预报出“北少南多”的降水分布型,但东北、华北北部、长江中游、华南西部和西南南部等地预测与实况一致。另外,热带气旋、梅雨和华北雨季的预测与实况基本一致。最后对汛期气候预测的复杂性及存在的不足进行了分析和讨论。  相似文献   

2.
章大全  袁媛  韩荣青 《气象》2023,(3):365-378
2022年汛期,国家气候中心准确预测了“全国气候年景总体偏差,区域性、阶段性旱涝灾害明显,降水空间差异显著,主要多雨区在我国北方”的总趋势,较好、较早把握了汛期主雨带位置和全国旱涝分布。对东亚夏季风和雨季季节进程“南海夏季风5月第3候爆发,长江中下游入梅偏早,梅雨量偏少,以及华北雨季开始偏早,雨量偏多”的预测与实况一致。对夏季台风生成个数较常年偏少,盛夏出现北上台风可能性大的预测与实况基本吻合。准确预测了全国平均气温趋势和高温异常特征。对“夏季我国中东部大部气温偏高,华东、华中、新疆等地高温日数较常年同期偏多,可能出现阶段性高温热浪”的预测与实况一致。主要不足之处是对长江中下游和川渝地区高温干旱的范围和极端程度估计不足。2022年汛期预测重点考虑连续La Ni?a事件和印度洋偶极子负位相对东亚夏季风环流的影响,夏季西太平洋副热带高压强度偏强,脊线位置偏北,东亚夏季风偏强,初夏东北冷涡活跃,导致汛期主雨带位于东北、华北和西北地区东部等地。  相似文献   

3.
2016年汛期气候预测效果评述及主要先兆信号与应用   总被引:7,自引:4,他引:3  
高辉  袁媛  洪洁莉  王东阡 《气象》2017,43(4):486-494
2016年汛期预测较好把握了"全国气候年景状况总体差,降水偏多,涝重于旱,洪涝灾害比1983年重,但比1998年轻"的总趋势,准确预测了长江流域降水异常偏多和严重的汛情,对2016年东部地区季节内雨季进程"华南前汛期开始早,南海夏季风5月第5候爆发,长江中下游入、出梅晚且雨量明显多,及华北雨季开始晚、雨量接近常年到略偏多"的预测与实况也一致。对台风强度强,活跃程度前弱后强的预测与实况基本吻合,对夏季全国大部气温正常到偏高,尤其是我国西北大部气温异常偏高及盛夏江南华南阶段性高温热浪的预测也接近实况。但对我国北方地区降水的预测存在较大偏差,未能正确预测华北降水异常偏多和7—8月东北地区明显少雨。2016年汛期预测中重点考虑了冬季超强El Nino事件及其衰减后热带印度洋海温接力作用对夏季风环流的影响,认为夏季尤其是夏季前期西太平洋副热带高压强度异常偏强,位置明显偏西,东亚副热带夏季风强度弱,这些都直接造成长江中下游地区降水明显偏多。  相似文献   

4.
2014年夏季我国南方出现严重洪涝、北方大部干旱,国内绝大多数预测模型在三月起报的汛期预测中均未能抓住位于南方地区的异常雨带,导致预测准确率明显偏低。基于模式对东亚地区夏季海平面气压场的高预报技巧和青藏高原冬季积雪与南方地区夏季降水的高相关性,本文提出一个针对我国夏季降水异常的组合统计降尺度预测新方法(Hybrid Statistical Downscaling Prediction,简称HSDP),该方法综合利用了气候模式输出的高可预报性环流信息和前期观测的高原积雪异常信号,从而实现对我国南方夏季降水进行动力-统计相结合的改进预报。据此方法建立了一个基于国家气候中心气候预测模式的统计降尺度模型。对我国南方夏季降水进行跨季节预测的交叉检验结果显示,HSDP方法对于南方地区多年平均空间距平相关系数从模式原始预报的-0.006提高到0.24,且在大多数年份均有改进。基于HSDP方法于三月份制作的2014年夏季降水预测,能够很好地抓住南涝北旱的基本形势和我国南方的降水大值区,空间距平相关系数达到0.43。这表明,该方法对于我国夏季降水预测具有较好业务应用前景。  相似文献   

5.
《气象》2017,(汛)
2016年汛期预测较好把握了"全国气候年景状况总体差,降水偏多,涝重于旱,洪涝灾害比1983年重,但比1998年轻"的总趋势,准确预测了长江流域降水异常偏多和严重的汛情,对2016年东部地区季节内雨季进程"华南前汛期开始早,南海夏季风5月第5候爆发,长江中下游入、出梅晚且雨量明显多,及华北雨季开始晚、雨量接近常年到略偏多"的预测与实况也一致。对台风强度强,活跃程度前弱后强的预测与实况基本吻合,对夏季全国大部气温正常到偏高,尤其是我国西北大部气温异常偏高及盛夏江南华南阶段性高温热浪的预测也接近实况。但对我国北方地区降水的预测存在较大偏差,未能正确预测华北降水异常偏多和7—8月东北地区明显少雨。2016年汛期预测中重点考虑了冬季超强El Nino事件及其衰减后热带印度洋海温接力作用对夏季风环流的影响,认为夏季尤其是夏季前期西太平洋副热带高压强度异常偏强,位置明显偏西,东亚副热带夏季风强度弱,这些都直接造成长江中下游地区降水明显偏多。  相似文献   

6.
章大全  袁媛  韩荣青 《气象》2023,(1):110-121
2022年夏季我国气候异常特征突出,区域性、阶段性旱涝灾害明显,降水空间差异显著。利用观测资料和再分析数据,基于合成和相关分析等方法,总结和探讨东亚夏季风和我国气候异常特征及可能成因。结果表明:2022年东亚夏季风季节进程总体提前,南海夏季风爆发偏早,华南前汛期、西南雨季、江南和长江中下游梅雨、华北和东北雨季开始均较常年偏早。2022年夏季我国气候总体温高雨少,全国平均气温为1961年以来历史同期最高,全国平均降水量为历史同期第二少,盛夏长江流域发生破纪录的高温伏旱。夏季降水异常的阶段性特征显著,6月上中旬主雨带位于华南,6月下旬至8月,随西太平洋副热带高压明显北跳,多雨区北移至华北、黄淮、东北、西北地区东部等地,我国东部地区降水呈“北多南少”分布。2022年夏季气候异常与海温等外强迫因子密切相关。La Ni?a事件在春季再次发展,赤道中太平洋冷海温加强和海洋性大陆上空对流活跃,热带印度洋偶极子负位相异常偏强,黑潮及延伸区海温偏暖,导致西太平洋副热带高压加强西伸和北抬,对夏季主雨带位置偏北和长江流域持续性异常高温天气起到重要作用。  相似文献   

7.
影响2018年汛期气候的先兆信号及预测效果评估   总被引:4,自引:2,他引:2  
陈丽娟  顾薇  龚振淞  任宏利 《气象》2019,45(4):553-564
准确预测了2018年我国汛期降水"南北多,中间少,旱涝并重"的总体布局,尤其是准确预测了黄河流域降水异常偏多,而长江流域降水异常偏少的特征;对2018年东部地区季节内雨季进程前晚后早和夏季全国大部气温正常到偏高的预测也与实况一致;对西北太平洋和南海热带气旋生成和登陆我国的数量偏多、西北行和北上为主的移动路径、活跃程度前强后弱的预测与实况吻合。2018年汛期气候预测重点分析了冬季达到盛期的拉尼娜事件及其衰减后热带印度洋海温偏低有利于东亚夏季风偏强的机理,还参考了国内外动力气候模式预测西太平洋副热带高压脊线偏北、菲律宾为气旋式异常环流的结果。对先兆信号影响的诊断分析以及动力模式的结果均预测东亚夏季风明显偏强,西太平洋副热带高压偏北,因此拉尼娜事件和印度洋海温对其滞后响应的偏冷特征是有利于预测汛期长江中下游地区降水明显偏少、北方地区降水偏多的重要先兆信号。  相似文献   

8.
准确预测了2018年我国汛期降水"南北多,中间少,旱涝并重"的总体布局,尤其是准确预测了黄河流域降水异常偏多,而长江流域降水异常偏少的特征;对2018年东部地区季节内雨季进程前晚后早和夏季全国大部气温正常到偏高的预测也与实况一致;对西北太平洋和南海热带气旋生成和登陆我国的数量偏多、西北行和北上为主的移动路径、活跃程度前强后弱的预测与实况吻合。2018年汛期气候预测重点分析了冬季达到盛期的拉尼娜事件及其衰减后热带印度洋海温偏低有利于东亚夏季风偏强的机理,还参考了国内外动力气候模式预测西太平洋副热带高压脊线偏北、菲律宾为气旋式异常环流的结果。对先兆信号影响的诊断分析以及动力模式的结果均预测东亚夏季风明显偏强,西太平洋副热带高压偏北,因此拉尼娜事件和印度洋海温对其滞后响应的偏冷特征是有利于预测汛期长江中下游地区降水明显偏少、北方地区降水偏多的重要先兆信号。  相似文献   

9.
为改进华北夏季降水异常的预测能力、寻找前期异常信号的监测预测指标,本文利用1961-2020年华北、华南夏季降水资料,美国环境预报中心和大气科学研究中心(National Centers for Environmental Prediction/National Center for Atmospheric Research, NCEP/NCAR)的再分析环流资料、向外长波辐射资料(Outgoing Longwave Radiation, OLR),采用相关、合成和环流异常回归重构等方法,分析了华南前汛期(5-6月)降水异常与华北夏季(7-8月)降水异常的联系。结果表明:(1)华北夏季(7-8月)降水异常通常与华南前汛期(5-6月)降水异常呈反位相关系,即如果华南前汛期降水偏多,对应华北夏季降水就会偏少,反之亦然。华南前汛期降水异常可以作为华北夏季降水异常监测预测的一个前期指标。东亚夏季风造成对流层低层水汽输送异常和北半球夏季热带低频信号传播造成对流层中低层环流异常是两地降水呈反位相变化的联系机制。(2)在水汽输送方面,如果5-6月东亚副热带夏季风偏强,即东亚西南南风(SSW)显著偏强...  相似文献   

10.
气候标准值改变对ENSO事件划分的影响   总被引:29,自引:4,他引:25  
分析了华南、长江流域和华北夏季风三雨带降水的年代际变化特征及其与海气系统的关系。结果表明,三雨带的开始日、结束日都有明显的年代际变化特征,主要表现为自1990年代至今,三雨带开始日推迟,华北雨带终止日明显提前。夏季风的进程与两极涛动密切相关,也与局地海陆热力差异有关:长江流域降水对应于欧亚大陆的位势高度正异常,而华南和华北降水都对应于欧亚大陆的位势高度负异常。华南、华北降水与北太平洋中纬度SST年代际变率密切相关,而长江流域降水与北大西洋中高纬度和西太平洋暖池SST的年代际变率有关。这说明年代际时间尺度上,夏季风进程的不同阶段对应着显著的环流和海温差别,中高纬的环流和海温对夏季风降水有重要的影响。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号