首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
胡帅  吴波  周天军 《大气科学》2019,43(4):831-845
印度洋偶极子(IOD)是热带印度洋年际变率主导模态之一,对于区域乃至全球气候有重要影响。准确预报IOD对于短期气候预测具有重要意义。中国科学院大气物理研究所最近建立了近期气候预测系统IAP-DecPreS,其初始化方案采用“集合最优插值—分析增量更新”(EnOI-IAU)方案,能够同化观测的海洋次表层温度廓线资料。本文分析了IAP-DecPreS季节回报试验对IOD的回报技巧,重点比较了全场同化和异常场同化两种初始化策略下预测系统对IOD的回报技巧。分析表明,8月起报秋季IOD,无论从确定性预报还是概率性预报的角度,基于全场同化的回报试验技巧均高于异常场同化的回报试验。对于5月起报的秋季IOD,基于两种初始化策略的回报试验技巧相当。研究发现,全场同化策略相对于异常场的优势主要源于它提高了对伴随ENSO发生的IOD的预报技巧。ENSO遥强迫触发的热带东印度洋“风—蒸发—SST”正反馈过程是IOD发展和维持的关键。采用全场同化策略的回报结果能够更好地模拟出IOD发展过程中ENSO遥强迫产生的异常降水场和异常风场的空间分布特征;而采用异常场同化策略,模拟的异常降水场和风场偏差较大。导致两种初始化策略预测结果技巧差异的主要原因是,全场同化能够减小模式对热带印度洋气候平均态降水固有的模拟偏差,从而提升了热带印度洋对ENSO遥强迫响应的模拟能力。而异常场同化由于在同化过程中保持了模式固有的气候平均态,因此模拟的热带印度洋对ENSO遥强迫的响应存在与模式自由积分类似的模拟偏差。  相似文献   

2.
The sensitivity of the predictive skill of a decadal climate prediction system is investigated with respect to details of the initialization procedure. For this purpose, the coupled ocean–atmosphere UCLA/MITgcm climate model is initialized using the following three different initialization approaches: full state initialization (FSI), anomaly initialization (AI) and FSI employing heat flux and freshwater flux corrections (FC). The ocean initial conditions are provided by the German contribution to Estimating the Circulation and Climate of the Ocean state estimate (GECCO project), from which ensembles of decadal hindcasts are initialized every 5 years from 1961 to 2001. The predictive skill for sea surface temperature (SST), sea surface height (SSH) and the Atlantic meridional overturning circulation (AMOC) is assessed against the GECCO synthesis. In regions with a deep mixed layer the predictive skill for SST anomalies remains significant for up to a decade in the FC experiment. By contrast, FSI shows less persistent skill in the North Atlantic and AI does not show high skill in the extratropical Southern Hemisphere, but appears to be more skillful in the tropics. In the extratropics, the improved skill is related to the ability of the FC initialization method to better represent the mixed layer depth, and the highest skill occurs during wintertime. The correlation skill for the spatially averaged North Atlantic SSH hindcasts remains significant up to a decade only for FC. The North Atlantic MOC initialized hindcasts show high correlation values in the first pentad while correlation remains significant in the following pentad too for FSI and FC. Overall, for the current setup, the FC approach appears to lead to the best results, followed by the FSI and AI procedures.  相似文献   

3.
Identifying regions sensitive to external radiative changes, including anthropogenic (sulphate aerosols and greenhouse gases) and natural (volcanoes and solar variations) forcings, is important to formulate actionable information at multi-year time-scales. Internally-generated climate variability can overcome this radiative forcing, especially at regional level, so that detecting the areas for this potential dominance is likewise critical for decadal prediction. This work aims to clarify where each contribution has the largest effect on North Atlantic sea surface temperature (SST) predictions in relation to the Atlantic multi-decadal variability (AMV). Initialized decadal hindcasts and radiatively-forced historical simulations from the fifth phase of the Climate Model Intercomparison Project are analysed to assess multi-year skill of the AMV. The initialized hindcasts reproduce better the phase of the AMV index fluctuations. The radiatively-forced component consists of a residual positive trend, although its identification is ambiguous. Initialization reduces the inter-model spread when estimating the level of AMV skill, thus reducing its uncertainty. Our results show a skilful performance of the initialized hindcasts in capturing the AMV-related SST anomalies over the subpolar gyre and Labrador Sea regions, as well as in the eastern subtropical basin, and the inability of the radiatively-forced historical runs to simulate the horseshoe-like AMV signature over the North Atlantic. Initialization outperforms empirical predictions based on persistence beyond 1–4 years ahead, suggesting that ocean dynamics play a role in the AMV predictability beyond the thermal inertia. The initialized hindcasts are also more skilful at reproducing the observed AMV teleconnection to the West African monsoon. The impact of the start date frequency is also described, showing that the standard of 5-year interval between start dates yields the main features of the AMV skill that are robustly detected in hindcasts with yearly start date sampling. This work updates previous studies, complementing them, and concludes that skilful initialized multi-model forecasts of the AMV-related climate variability can be formulated, improving uninitialized projections, until 3–6 years ahead.  相似文献   

4.
A verification framework for interannual-to-decadal predictions experiments   总被引:2,自引:1,他引:1  
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.  相似文献   

5.
Real-time multi-model decadal climate predictions   总被引:1,自引:1,他引:0  
We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.  相似文献   

6.
This study focuses on model predictive skill with respect to stratospheric sudden warming(SSW) events by comparing the hindcast results of BCC_CSM1.1(m) with those of the ECMWF's model under the sub-seasonal to seasonal prediction project of the World Weather Research Program and World Climate Research Program. When the hindcasts are initiated less than two weeks before SSW onset, BCC_CSM and ECMWF show comparable predictive skill in terms of the temporal evolution of the stratospheric circumpolar westerlies and polar temperature up to 30 days after SSW onset. However, with earlier hindcast initialization, the predictive skill of BCC_CSM gradually decreases, and the reproduced maximum circulation anomalies in the hindcasts initiated four weeks before SSW onset replicate only 10% of the circulation anomaly intensities in observations. The earliest successful prediction of the breakdown of the stratospheric polar vortex accompanying SSW onset for BCC_CSM(ECMWF) is the hindcast initiated two(three) weeks earlier. The predictive skills of both models during SSW winters are always higher than that during non-SSW winters, in relation to the successfully captured tropospheric precursors and the associated upward propagation of planetary waves by the model initializations. To narrow the gap in SSW predictive skill between BCC_CSM and ECMWF, ensemble forecasts and error corrections are performed with BCC_CSM. The SSW predictive skill in the ensemble hindcasts and the error corrections are improved compared with the previous control forecasts.  相似文献   

7.
This paper systematically evaluates the deviations that appear in the hindcasts of the East Asian summer precipitation (EASP) decadal change in the late 1990s in two global coupled models (BCC_CGCM and BCC_CSM). The possible causes for the deviations between the model hindcasts and observations are analyzed. The results show that the hindcasts of EASP by BCC_CGCM and BCC_CSM deviate from observations, with the anomaly correlation coefficient (ACC) being -0.01 and -0.09 for the two models, respectively. The SST anomalies in North and West Pacific and the SST index values predicted by the two models also deviate from the observations, indicating that inconsistent SST fields may be the key factor leading to the deviation in the prediction of the EASP decadal shift. Thus, a dynamic-analogue scheme is proposed to correct the precipitation hindcasts by using SSTs, where SST and EASP are highly correlated, to select historical analogue cases. Cross validations show that the average ACC of the temporal-latitude distribution of the EASP between the corrected hindcasts and observations is 0.18 for BCC_CGCM and 0.02 for BCC_CSM; both are much higher than the uncorrected hindcasts. Applying the dynamic-analogue correction scheme in both models successfully improves prediction of the EASP decadal change in the late 1990s.  相似文献   

8.
A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office’s (GMAO’s) GEOS-5 Atmosphere–Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO’s atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 % improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the subpolar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.  相似文献   

9.
针对未来1~10 a气候状态的近期气候预测(年代际预测)是当前国际气候领域的研究热点。本文综述了中国科学院大气物理研究所发展的基于耦合气候系统模式的年代际气候预测系统IAP-DecPreS相关的研究进展。IAP-DecPreS系统的核心部分是耦合模式海洋分量初始化方案,“集合最优插值-分析增量更新”(EnOI-IAU)方案,该方案将集合最优插值(EnOI)和增量分析更新(IAU)结合起来,能够同化原始的海洋次表层温度廓线观测资料,对耦合模式进行初始化。系统的年代际回报试验表明,IAP-DecPreS对太平洋年代际振荡和大西洋多年代际变率的预测技巧与耦合模式比较计划第五阶段(CMIP5)技巧较高的模式相当。IAP-DecPreS系统被广泛应用于气候预测相关研究,包括火山气溶胶对年代际预测技巧的影响,全场同化和异常场同化两种不同的初始化方法对ENSO、印度洋偶极子模态和印度洋洋盆模态等的预测技巧的影响。最后,结合国际发展态势,对未来IAP-DecPreS的发展进行了讨论。  相似文献   

10.
Potential predictability and skill of simulated Eurasian snow cover are explored using a suite of seasonal ensemble hindcasts (i.e. retrospective forecasts), an ensemble climate simulation (spanning the years 1982–1998) and observations. Using remotely sensed observations of snow cover, we find significant point-wise correlation over the North Atlantic and North Pacific between winter and spring averaged sea-surface temperatures and Eurasian snow cover area. The observed correlation shows no discernible pattern related to the El Niño-Southern Oscillation (ENSO). The hindcasts show correlation patterns similar to the observations. However, the climate simulation shows an exaggerated ENSO pattern. The results underscore the importance of initialization in seasonal climate forecasts, and that the observed potential predictability of Eurasian snowcover cannot be solely attributed to ENSO.  相似文献   

11.
本文基于国家气候中心气候系统模式BCC_CSM1.1自1960—2004年每年起报的年代际预测试验结果,初步评估了该模式对北极涛动(AO)的预报技巧。同时,把该模式年代际预测结果与历史试验模拟比较,分析了气候模式初始化对年代际试验预测季节尺度AO及其年际变化的贡献。结果表明,年代际试验和历史试验均能反映出AO模态是北半球中高纬大气变率第一模态的特征,其中年代际预测试验回报的AO模态与观测的空间相关系数高于历史试验。两组试验基本能再现AO指数冬季最强、夏季最弱的特征。与历史试验相比,年代际预测试验回报月和冬季AO指数与观测的相关系数更高,特别是年代际试验与观测的月AO指数相关系数达到了0.1的显著性水平。年代际试验回报月、春季AO指数的变化周期更接近观测结果。因此,年代际试验中初始状态使用海温资料进行初始化,在一定程度上可以提高AO的回报能力。  相似文献   

12.
Liu  Xueyuan  Köhl  Armin  Stammer  Detlef  Masuda  Shuhei  Ishikawa  Yoichi  Mochizuki  Takashi 《Climate Dynamics》2017,49(3):1061-1075

We investigated the influence of dynamical in-consistency of initial conditions on the predictive skill of decadal climate predictions. The investigation builds on the fully coupled global model “Coupled GCM for Earth Simulator” (CFES). In two separate experiments, the ocean component of the coupled model is full-field initialized with two different initial fields from either the same coupled model CFES or the GECCO2 Ocean Synthesis while the atmosphere is initialized from CFES in both cases. Differences between both experiments show that higher SST forecast skill is obtained when initializing with coupled data assimilation initial conditions (CIH) instead of those from GECCO2 (GIH), with the most significant difference in skill obtained over the tropical Pacific at lead year one. High predictive skill of SST over the tropical Pacific seen in CIH reflects the good reproduction of El Niño events at lead year one. In contrast, GIH produces additional erroneous El Niño events. The tropical Pacific skill differences between both runs can be rationalized in terms of the zonal momentum balance between the wind stress and pressure gradient force, which characterizes the upper equatorial Pacific. In GIH, the differences between the oceanic and atmospheric state at initial time leads to imbalance between the zonal wind stress and pressure gradient force over the equatorial Pacific, which leads to the additional pseudo El Niño events and explains reduced predictive skill. The balance can be reestablished if anomaly initialization strategy is applied with GECCO2 initial conditions and improved predictive skill in the tropical Pacific is observed at lead year one. However, initializing the coupled model with self-consistent initial conditions leads to the highest skill of climate prediction in the tropical Pacific by preserving the momentum balance between zonal wind stress and pressure gradient force along the equatorial Pacific.

  相似文献   

13.
A statistical downscaling approach was developed to improve seasonal-to-interannual prediction of summer rainfall over North China by considering the effect of decadal variability based on observational datasets and dynamical model outputs.Both predictands and predictors were first decomposed into interannual and decadal components.Two predictive equations were then built separately for the two distinct timescales by using multivariate linear regressions based on independent sample validation.For the interannual timescale,850-hPa meridional wind and 500-hPa geopotential heights from multiple dynamical models' hindcasts and SSTs from observational datasets were used to construct predictors.For the decadal timescale,two well-known basin-scale SST decadal oscillation (the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation) indices were used as predictors.Then,the downscaled predictands were combined to represent the predicted/hindcasted total rainfall.The prediction was compared with the models' raw hindcasts and those from a similar approach but without timescale decomposition.In comparison to hindcasts from individual models or their multi-model ensemble mean,the skill of the present scheme was found to be significantly higher,with anomaly correlation coefficients increasing from nearly neutral to over 0.4 and with RMSE decreasing by up to 0.6 mm d-1.The improvements were also seen in the station-based temporal correlation of the predictions with observed rainfall,with the coefficients ranging from-0.1 to 0.87,obviously higher than the models' raw hindcasted rainfall results.Thus,the present approach exhibits a great advantage and may be appropriate for use in operational predictions.  相似文献   

14.
Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of observations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal correlates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.  相似文献   

15.
Using a statistical relationship between simulated sea surface temperature and Atlantic hurricane activity, we estimate the skill of a CMIP5 multi-model ensemble at predicting multi-annual level of Atlantic hurricane activity. The series of yearly-initialized hindcasts show positive skill compared to simpler forecasts such as persistence and climatology as well as non-initialized forecasts and return anomaly correlation coefficients of ~0.6 and ~0.8 for five and nine year forecasts, respectively. Some skill is shown to remain in the later years and making use of those later years to create a lagged-ensemble yields, for individual models, results that approach that obtained by the multi-model ensemble. Some of the skill is shown to come from persisting rather than predicting the climate shift that occur in 1994–1995. After accounting for that shift, the anomaly correlation coefficient for five-year forecasts is estimated to drop to 0.4, but remains statistically significant up to lead years 3–7. Most of the skill is shown to come from the ability of the forecast systems at capturing change in Atlantic sea surface temperature, although the failure of most systems at reproducing the observed slow down in warming over the tropics in recent years leads to an underestimation of hurricane activity in the later period.  相似文献   

16.
This paper shows demonstrable improvement in the global seasonal climate predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean precipitation and surface temperature from a two-tiered seasonal hindcast forced with forecasted SST relative to two other contemporary operational coupled ocean–atmosphere climate models. The results from an extensive set of seasonal hindcasts are analyzed to come to this conclusion. This improvement is attributed to: (1) The multi-model bias corrected SST used to force the atmospheric model. (2) The global atmospheric model which is run at a relatively high resolution of 50 km grid resolution compared to the two other coupled ocean–atmosphere models. (3) The physics of the atmospheric model, especially that related to the convective parameterization scheme. The results of the seasonal hindcast are analyzed for both deterministic and probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The paper concludes that the coupled ocean–atmosphere seasonal hindcasts have reached a reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher resolution two tier prediction experiments to glean further boreal summer and fall seasonal prediction skill.  相似文献   

17.
Preliminary evaluations of FGOALS-g2 for decadal predictions   总被引:3,自引:0,他引:3  
The Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) for decadal predictions, is evaluated preliminarily, based on sets of ensemble 10-year hindcasts that it has produced. The results show that the hindcasts were more accurate in decadal variability of SST and surface air temperature (SAT), particularly in that of Nin o3.4 SST and China regional SAT, than the second sample of the historical runs for 20th-century climate (the control) by the same model. Both the control and the hindcasts represented the global warming well using the same external forcings, but the control overestimated the warming. The hindcasts produced the warming closer to the observations. Performance of FGOALS-g2 in hindcasts benefits from more realistic initial conditions provided by the initialization run and a smaller model bias resulting from the use of a dynamic bias correction scheme newly developed in this study. The initialization consists of a 61-year nudging-based assimilation cycle, which follows on the control run on 01 January 1945 with the incorporation of observation data of upper-ocean temperature and salinity at each integration step in the ocean component model, the LASG IAP Climate System Ocean Model, Version 2 (LICOM2). The dynamic bias correction is implemented at each step of LICOM2 during the hindcasts to reduce the systematic biases existing in upper-ocean temperature and salinity by incorporating multi-year monthly mean increments produced in the assimilation cycle. The effectiveness of the assimilation cycle and the role of the correction scheme were assessed prior to the hindcasts.  相似文献   

18.
This study examines the prediction skill of the contiguous United States (CONUS) precipitation in summer, as well as its potential sources using a set of ensemble hindcasts conducted with the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 and initialized from four independent ocean analyses. The multiple ocean ensemble mean (MOCN_ESMEAN) hindcasts start from each April for 26 summers (1982–2007), with each oceanic state paired with four atmosphere-land states. A subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) project for the same period, from the same initial month and with the same total ensemble size, is also analyzed. Compared with CFSRR, MOCN_ESMEAN is distinguished by its oceanic ensemble spread that introduces potentially larger perturbations and better spatial representation of the oceanic uncertainty. The prediction skill of the CONUS precipitation in summer shows a similar spatial pattern in both MOCN_ESMEAN and CFSRR, but the results suggested that initialization from multiple ocean analyses may bring more robust signals and additional skills to the seasonal prediction for both sea surface temperature and precipitation. Among the predictable areas for precipitation, the northwestern CONUS (NWUS) is the most robust. A further analysis shows that the enhanced summer precipitation prediction skill in NWUS is mainly associated with the El Niño/Southern Oscillation, with possible influence also from the Pacific Decadal Oscillation. Through this work, we argue that a large ensemble is necessary for precipitation forecast in mid-latitudes, such as the CONUS, and taking into account of the oceanic initial state uncertainty is an efficient way to build such an ensemble.  相似文献   

19.
This paper presents an assessment of the seasonal prediction skill of current global circulation models, with a focus on the two-meter air temperature and precipitation over the Southeast United States. The model seasonal hindcasts are analyzed using measures of potential predictability, anomaly correlation, Brier skill score, and Gerrity skill score. The systematic differences in prediction skill of coupled ocean–atmosphere models versus models using prescribed (either observed or predicted) sea surface temperatures (SSTs) are documented. It is found that the predictability and the hindcast skill of the models vary seasonally and spatially. The largest potential predictability (signal-to-noise ratio) of precipitation anywhere in the United States is found in the Southeast in the spring and winter seasons. The maxima in the potential predictability of two-meter air temperature, however, reside outside the Southeast in all seasons. The largest deterministic hindcast skill over the Southeast is found in wintertime precipitation. At the same time, the boreal winter two-meter air temperature hindcasts have the smallest skill. The large wintertime precipitation skill, the lack of corresponding two-meter air temperature hindcast skill, and a lack of precipitation skill in any other season are features common to all three types of models (atmospheric models forced with observed SSTs, atmospheric models forced with predicted SSTs, and coupled ocean–atmosphere models). Atmospheric models with observed SST forcing demonstrate a moderate skill in hindcasting spring-and summertime two-meter air temperature anomalies, whereas coupled models and atmospheric models forced with predicted SSTs lack similar skill. Probabilistic and categorical hindcasts mirror the deterministic findings, i.e., there is very high skill for winter precipitation and none for summer precipitation. When skillful, the models are conservative, such that low-probability hindcasts tend to be overestimates, whereas high-probability hindcasts tend to be underestimates.  相似文献   

20.
The South Pacific Ocean is a key driver of climate variability within the Southern Hemisphere at different time scales. Previous studies have characterized the main mode of interannual sea surface temperature (SST) variability in that region as a dipolar pattern of SST anomalies that cover subtropical and extratropical latitudes (the South Pacific Ocean Dipole, or SPOD), which is related to precipitation and temperature anomalies over several regions throughout the Southern Hemisphere. Using that relationship and the reported low predictive skill of precipitation anomalies over the Southern Hemisphere, this work explores the predictability and prediction skill of the SPOD in near-term climate hindcasts using a set of state-of-the-art forecast systems. Results show that predictability greatly benefits from initializing the hindcasts beyond the prescribed radiative forcing, and is modulated by known modes of climate variability, namely El Niño-Southern Oscillation and the Interdecadal Pacific Oscillation. Furthermore, the models are capable of simulating the spatial pattern of the observed SPOD even without initialization, which suggests that the key dynamical processes are properly represented. However, the hindcast of the actual phase of the mode is only achieved when the forecast systems are initialized, pointing at SPOD variability to not be radiatively forced but probably internally generated. The comparison with the performance of an empirical prediction based on persistence suggests that initialization may provide skillful information for SST anomalies, outperforming damping processes, up to 2–3 years into the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号