首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
基于中国热带气旋年鉴资料,从气候学角度出发,对西北太平洋TC(热带气旋)发生温带变性的频数与大尺度环流系统间的关系进行了诊断和分析.研究发现变性TC多发生于夏、秋两季,通过对NCEP月平均再分析资料的500hPa高度场进行EOF分解,发现西北太平洋TC变性的频数与65°N附近强冷高压系统在夏、秋两季都存在着正相关关系,且相关性在秋季高于夏季;与30°N附近强副热带高压系统存在负相关关系,夏季副热带高压系统的作用更大;与30°N以南西北太平洋多台风活动区域的弱低压存在显著的负相关,低压越弱,对流越弱,则TC的生成数越少,其中发生变性的TC数也会减少.500hPa高度场EOF分解的第一特征向量所对应的时间函数分布在20世纪70年代中期前后出现了反号,较好地对应了变性TC年频数的年际变化趋势,70年代中期之前变性TC呈总体偏多,之后变性TC的频数总体偏少,呈明显下降趋势.  相似文献   

2.
为了认识川渝冬季降水与海温之间的关系,利用川渝地区44个站点降水资料和海表温度资料并借助EOF分解、小波分析和相关分析等方法,讨论了川渝冬季年际降水变化特征及其与前期海温异常之间的关系。结果表明:川渝冬季年际降水空间分布主要有3个类型,EOFl型为川渝冬季降水的一致偏多(偏少),EOF2型为川渝西南部、东部降水偏少(偏多),而川渝地区西北部、中部降水偏多(偏少);EOF3型为川渝西南部降水偏多(偏少),而东北部降水偏少(偏多);EOF1型和EOF2型降水与前期海温的相关明显小于EOF3型并较为分散,EOF3型降水与前期夏季、秋季海温在热带中、东太平洋和印度洋中、北部呈现非常显著的正相关,对应ENSO特征非常明显。  相似文献   

3.
Using 10-year (January 1998–October 2007) dataset of Sea-viewing Wide Field-of-view Sensor (SeaWiFS), we extracted the dominant spatial patterns and temporal variations of the chlorophyll distribution in the central western South China Sea (SCS) through Empirical Orthogonal Function (EOF) analysis. The results show that the first EOF mode is characterized by a high chlorophyll concentration zone along the Vietnam coast. We found two peaks in summer (July–August) and in winter (December), respectively, in no...  相似文献   

4.
Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fields from SODA (Simple Ocean Data Assimilation) data spanning the period of 1950-1999. The coupled fields achieved the maximum correlation when the SST lagged SWS by one month, indicating that the SCS coupled system mainly reflected the response of the SST to monsoon forcing. Three significant coupled modes were found in the SCS, accounting for more than 80% of the cumulative squared covariance fraction. The first three SST spatial patterns from CSVD were: (Ⅰ) the monopole pattern along the isobaths in the SCS central basin; (Ⅱ) the north-south dipole pattern; and (Ⅲ) the west-east seesaw pattern. The expansion coefficient of the SST leading mode showed interdecadal and interannual variability and correlation with the Indo-Pacific warm pool (IPWP), suggesting that the SCS belongs to part of the IPWP at interannual and interdecadal time scales. The second mode had a lower correlation coefficient with the warm pool index because its main period was at intra-annual time scales instead of the interannual and interdecadal scales with the warm pools. The third mode had similar periods to those of the leading mode, but lagged the eastern Indian Ocean warm pool (EIWP) and western Pacific warm pool (WPWP) by five months and one year respectively, implying that the SCS response to the warm pool variation occurred from the western Pacific to the eastern Indian Ocean, which might have been related to the variation of Indonesian throughflow. All three modes in the SCS had more significant correlations with the EIWP, which means the SCS SST varied much more coherently with the EIWP than the WPWP, suggesting that the SCS belongs mostly to part of the EIWP. The expansion coefficients of the SCS SST modes all had negative correlations with the Nino3 index, which they lag by several months, indicating a remote response of SCS SST variability to the El Nifio events.  相似文献   

5.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   

6.
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.  相似文献   

7.
青藏高原冬季降水的气候特征认识对高原冬季雪灾的防御有着重要意义。基于青藏高原54个气象站1971~2010年冬季(12~2月)逐月降水量资料,利用现代统计方法分析了青藏高原冬季降水的时空分布特征及突变现象,利用经验正交函数(EOF)和旋转经验正交函数(REOF)概括出高原冬季降水的6种主要空间分布型以及区域性特征进行分析。结果表明:冬季降水分布不均匀,偏东偏南部降水量相对较多,冬季降水在12月最少,2月最多;EOF对青藏高原地区冬季降水分解为6种模态,全区一致型、南北部型、东西部型、川西型、高原腹地型和西部型模态;EOF第1模态时间系数表明高原大部分地区冬季降水在20世纪90年代有显著增加、且存在14年左右的周期变化特征。REOF分析表明,高原地区冬季降水的局地特征显著,而高原腹地与中东部地区变化特征显示了高原冬季降水的主要变化特征,与EOF分析第1模态的变化特征较为一致。  相似文献   

8.
By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Nino-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Nino, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a ’Southern Flood and Northern Drought’ pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a ’Northern Flood and Southern Drought’ pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the ’Silk Road’ teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.  相似文献   

9.
To discuss the intrusion of the Kuroshio into the SCS, we examined the mixing between the North Pacific and South China Sea (SCS) waters based on in-situ CTD data collected in August and September 2008 and the moored ADCP data taken from mid September 2008 to early July 2009. The CTD survey included four meridional sections from 119°E to 122°E around the Luzon Strait, during which pressure, temperature, and salinity were measured. The CTD data show that the isopycnal surface tilted from the SCS to the North Pacific; and it was steeper in the lower layers than in the upper ones. Meanwhile, we found strong vertical mixing taken place in the areas near 121°E. The Kuroshio in high temperature and salinity intruded westward through Luzon Strait. The frequency of buoyancy was one order of magnitude greater than that of the common ones in the ocean, suggesting stronger stratification in the northeastern SCS. On the other hand, the long-term ADCP data show that before late October 2008, the direction of water flow in the SCS was eastward, and from November 2008 to late February 2009, it turned northwestward in the layers shallower than 150 m, while remained unchanged in deep layers from 200 to 450 m. From March to June 2009, the direction shifted with increasing depth from northward to southward, akin to the Ekman spiral. EOF analysis of the current time series revealed dominant empirical modes: the first mode corresponded to the mean current and showed that the Kuroshio intrusion occurred in the upper layers only from late December to early March. The temporal coefficient of the first and the second mode indicated clearly a dominant signal in a quasi-seasonal cycle.  相似文献   

10.
Chinese summer extreme rainfall often brings huge economic losses, so the prediction of summer extreme rainfall is necessary. This study focuses on the predictability of the leading mode of Chinese summer extreme rainfall from empirical orthogonal function(EOF) analysis. The predictors used in this study are Arctic sea ice concentration(ASIC) and regional sea surface temperature(SST) in selected optimal time periods. The most important role that Arctic sea ice(ASI) plays in the appearance of EOF1 may be strengthening the high pressure over North China, thereby preventing water vapor from going north. The contribution of SST is mainly at low latitudes and characterized by a significant cyclone anomaly over South China. The forecast models using predictor ASIC(PA), SST(PS), and the two together(PAS) are established by using data from 1980 to 2004. An independent forecast is made for the last 11 years(2005-2015). The correlation coefficient(COR) skills between the observed and cross-validation reforecast principal components(PC) of the PA, PS, and PAS models are 0.47, 0.66, and 0.76, respectively. These values indicate that SST is a major cause of Chinese summer extreme rainfall during 1980-2004. The COR skill of the PA model during the independent forecast period of 2004-2015 is 0.7, which is significantly higher than those of the PS and PAS models. Thus, the main factor influencing Chinese summer extreme rainfall in recent years has changed from low latitudes to high latitudes. The impact of ASI on Chinese summer extreme rainfall is becoming increasingly significant.  相似文献   

11.
To investigate whether the Asian monsoon influences tropical cyclone (TC) activity over the South China Sea (SCS), TCs (including tropical storms and typhoons) over the SCS are analyzed using the Joint Typhoon Warning Center dataset from 1945 to 2009. Results show an increasing trend in the frequencies of TC-all (all TCs over the SCS) and TY-all (all typhoons over the SCS), due mainly to an increase in the number of TCs moving into the SCS after development elsewhere. Little change is seen in the number of TCs that form in the SCS. The results of wavelet analysis indicate that the frequency of typhoons (TY) shows a similar oscillation as that of TCs, i.e., a dominant periodicity of 8-16 years around the 1970s for all TC activity, except for TC-mov (TCs that moved into the SCS from the western North Pacific). To examine the relationship between typhoon activity and the summer monsoon, a correlation analysis was performed that considered typhoons, TCs, and five monsoon indexes. The analysis reveals statistically significant negative correlation between the strength of the Southwest Asian summer monsoon and typhoon activity over the SCS, which likely reflects the effect of the monsoon on TC formation in the western North Pacific (WNP) and subsequent movement into the SCS. There is a statistically significant negative correlation between TY-loc (typhoons that developed from TCs formed over the SCS) and the South China Sea summer monsoon and Southeast Asian summer monsoon.  相似文献   

12.
In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Ni a phase and weakening in the El Ni o phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.  相似文献   

13.
本文应用四川盆地23个站的年降水资料、太阳黑子相对数与西北太平洋副高强度指数资料,分析太阳黑子活动的异常与四川盆地降水的联系,认为:四川盆地东西部降水量呈振荡型、这种振荡型可能是太阳活动通过西北太平洋副高的作用而激发的、时间上有滞后一年以上的特性,即太阳黑子活动的强弱、引起西北太平洋副高强度的变化,进而影响四川降水的东西分布特征。反映为太阳黑子偏多年分,第二年的西北太平洋高压偏强、相应四川盆地降水呈西涝东旱型、反之亦然。  相似文献   

14.
Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.  相似文献   

15.
Remote sensing data from passive microwave and satellite-based altimeters, associated with the data measured underway, were used to characterize seasonal and spatial changes in sea ice conditions along...  相似文献   

16.
The principal variability patterns (EOF) of the anomalies of total heat transfer from ocean to atmosphere computed from 30 years' monthly averaged data over the North Pacific Ocean (20°–60°N) showed variability was dominated by two patterns: a bipolar pattern and a dominantly positive or negative pattern depending on the sign of the time series coefficients. The atmosphere contributes greatly to the marine heating anomalies in most of the North Pacific in all seasons. In winter, a positive feedback is formed between the Aleutian Low and the marine heating anomalies; in summer, the marine heating anomalies are controlled by the heating on the Qinghai-Tibetan Plateau. Both patterns have a winter correlation with the Southern Oscillation Index. Contribution No. 1534 from the Institute of Oceanology, Academia Sinica  相似文献   

17.
热带海洋热状况是影响中国气候变化的主要因子之一,为了研究热带次表层海温如何影响中国气候,通过相关计算和合成分析等方法讨论了热带太平洋至印度洋次表层海温异常对中国东部夏季降水和温度的影响。结果表明:当冬季赤道东印度洋至西太平洋次表层海温偏暖(偏冷),中印度洋和东太平洋次表层海温偏冷(偏暖),夏季,长江中下游地区降水偏少(偏多),华南、华北和东北大部地区降水偏多(偏少);中国东部大范围高温(低温)。其可能的影响途径为,东亚夏季风环流对热带次表层海温异常的响应导致了其年际变化,进而引起中国东部夏季气候的异常分布。  相似文献   

18.
The abyssal circulation in the Philippine Sea(PS)is investigated,with outputs from the Simple Ocean Data Assimilation version 2.2.4(SODA224).The deep-water currents in SODA224 are carefully evaluated,with sparse in situ observations in the North Pacific Ocean.In the upper deep layer(20003000 m)of the PS,a strong westward current,which originates from the Northeast Pacific Basin and enters the PS through the Yap-Mariana Junction,exists along 1114 N.This strong westward current bifurcates into two western boundary currents off the Philippines.The northward-flowing current flows out of the PS around 2021 N,whereas the southward-flowing current transports deep water from the northern hemisphere to the southern hemisphere.In the lower deep layer(30004500 m),the inflow water first flows northward to the east of the Western Mariana Basin and then turns westward at approximately 18 N.The inflow water mainly enters the Philippine Basin(PB),with a small part turning southward to constitute a weak cyclonic circulation.The water entering the PB mainly merges into a strong southward western boundary current in the south-ern PB.In the bottom layer(below 4500 m),both the northeast and northwest PB show single cyclonic gyres,whereas the south PB shows a single anticyclonic gyre.Moreover,comparisons with the observations indicate the possible existence of a cyclonic sense of circulation over the Philippine Trench.The current study provides the implications for future observations,which are needed to fur-ther investigate the temporospatial variations of the abyssal circulation in the PS on multiple scales.  相似文献   

19.
利用GRACE卫星数据反演华北平原2003~2015年地下水储量变化,并用监测井数据进行验证。基于EOF方法分解GRACE年际地下水储量变化,结合冬小麦年均WFblue和TRMM降雨数据分析影响华北平原地下水储量年际变化的因素。结果表明,前2个特征向量方差贡献率为93.09%。其中,第1模态方差贡献率为80.04%,与华北平原2003~2009年冬小麦年均WFblue空间变化的相关系数为-0.69,且空间分布一致;第2模态方差贡献率为13.05%,与同时段降水数据的空间分布的相关系数为0.93。说明农业灌溉,尤其是冬小麦的灌溉对华北平原地下水的消耗起着至关重要的作用。  相似文献   

20.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号