首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用Thermo RP 1400a对塔克拉玛干沙漠腹地塔中及周边的哈密与和田进行了长达6 a多的沙尘气溶胶PM10连续观测,结合气象资料,分析了该区域沙尘气溶胶PM10的基本特征及影响因素。其结果是:①在哈密、塔中与和田,浮尘、扬沙日数呈上升趋势,沙尘暴日数变化不明显,沙尘天气出现的频率和强度是影响沙漠地区沙尘气溶胶PM10浓度的主要因素。②PM10质量浓度具有明显的区域分布特征,塔克拉玛干沙漠东缘的哈密最低,其次为沙漠南缘的和田,最高的为沙漠腹地的塔中。③每年3—9月是哈密PM10质量浓度的高值时段;塔中与和田PM10质量浓度高值时段分布在3—8月,平均浓度分别在500~1 000 μg·m-3之间变化。④哈密、塔中与和田PM10季节平均浓度变化特征,春季>夏季>秋季>冬季;PM10平均浓度最高的塔中,春季在1 000 μg·m-3左右变化,夏季在400~900 μg·m-3之间,秋冬两季浓度较低基本上在200~400 μg·m-3之间变化。⑤哈密、塔中与和田沙尘暴季节PM10浓度远高于非沙尘暴季节,沙尘暴季节浓度基本上为非沙尘暴季节浓度的两倍以上;塔中2004年和2008年沙尘暴季节平均浓度分别是非沙尘暴季节的6.2倍和3.6倍。⑥沙尘天气过程中PM10质量浓度变化具有以下规律,晴天<浮尘天气<浮尘、扬沙天气<沙尘暴天气。⑦风速大小直接影响大气中PM10浓度,风速越大浓度越高。气温、相对湿度和气压是影响沙尘暴强度的重要因素,也间接影响大气中PM10浓度的变化。  相似文献   

2.
塔克拉玛干沙漠腹地沙尘气溶胶质量浓度垂直分布特征   总被引:4,自引:0,他引:4  
 利用Grimm 1.108、Thermo RP 1 400 a以及TSP等仪器于2009年1月至2010年2月对塔克拉玛干沙漠腹地塔中不同高度沙尘气溶胶质量浓度进行连续观测,结合天气资料进行分析。结果表明:①80 m高度PM10质量浓度最高,80 m高度PM2.5和PM1.0质量浓度明显低于4 m高度PM10,80 m高度PM1.0质量浓度最低。频繁的沙尘天气是影响不同粒径的沙尘气溶胶浓度含量的主要因素。②夜间至日出,PM质量浓度逐渐降低,最低基本上出现在08:00,随后质量浓度逐渐增大,18:00前后浓度达到最高值,然后又逐步降低。其规律与风速的昼夜变化完全一致。③TSP月平均质量浓度高值主要集中在3—9月,其中4月和5月浓度最高,随后逐渐减低。3—9月也是PM月平均质量浓度的高值区域,4 m高度PM10月平均质量浓度最高发生在5月,其浓度为846.0 μg·m-3。80 m高度PM10浓度远高于PM2.5和PM1.0浓度,PM2.5和PM1.0浓度相差较小。风沙天气对大气中的不同粒径粒子的浓度含量影响较大,风沙天气越多,粗颗粒含量越高,反之则细颗粒越多。④沙尘天气过程中不同粒径沙尘气溶胶质量浓度变化具有晴天<浮尘天气<扬沙天气<沙尘暴天气的规律。各种沙尘天气中,PM10/TSP表现为晴好天气高于浮尘天气,浮尘天气远高于扬沙和沙尘暴天气。⑤沙尘天气过程中,沙尘气溶胶浓度随着粒径的减小,浓度逐渐降低。不同高度、不同粒径的沙尘气溶胶质量浓度每隔3~4 d形成一个峰值区,与每隔3~4 d出现沙尘天气强度增强过程直接相关。  相似文献   

3.
李霞  胡秀清  崔彩霞  李娟 《中国沙漠》2005,25(4):488-495
依据气溶胶光学厚度测量原理,利用布设于塔里木盆地腹地塔中和盆地西南边缘和田气象站的2部CE318自动跟踪太阳光度计于2002年6月至2003年11月期间的探测结果,结合地面气象实测资料,分析了南疆盆地大气气溶胶的光学特性。同时结合我国已有的沙尘气溶胶光学特性的研究成果,初步提出了依据气溶胶光学厚度判断沙尘天气强度的标准。结果表明:塔中、和田气溶胶光学厚度随波长的增大多呈现减小趋势,塔中个别季节有些例外;2站气溶胶光学厚度的日变化基本保持对称的抛物线形,在春、夏季尤为明显;Angstrom浑浊度系数β的拟合曲线显示β随能见度增大而减小,波长指数α随能见度的变化趋势说明弱沙尘天气下,大气中主要弥漫着小粒径的气溶胶颗粒,而强沙尘天气则以大粒径为主;沙尘气溶胶光学厚度随晴空、浮尘、扬沙、沙尘暴依次增加;沙尘天气发生时,气溶胶光学厚度的临界值基本为晴空值的两倍,沙漠地区气溶胶光学厚度≥1.1206,北京≥0.3174。而发生沙尘暴的阈值则有很大不同,沙漠区气溶胶光学厚度至少 > 3.0,北京由于大气污染等因素,其判断沙尘暴发生的阈值为1.9982。另外笔者认为AOD与水平能见度之比值能够较全面地考虑水平和垂直两个方向的要素变化,衡量沙尘天气强度更具有合理意义,值得更深一步的探讨。  相似文献   

4.
一次沙尘过程对天津气溶胶浓度分布的影响   总被引:1,自引:1,他引:0  
姚青  蔡子颖  韩素芹  穆怀斌 《中国沙漠》2013,33(4):1138-1143
利用气溶胶质量浓度和数浓度监测资料以及不同高度的常规气象资料,结合后向轨迹模式,分析2011年4月30日至5月1日一次沙尘天气过程对天津城区气溶胶浓度的影响。结果表明:沙尘过程前的轻雾天气下PM1贡献了气溶胶质量浓度的96%和数浓度的99.9%以上;本次沙尘天气存在两个不同的浮尘过程,主要区别体现在细粒子浓度差异上,第一次浮尘过程PM1~2.5、PM2.5~10和PM10~100分别占气溶胶数浓度的6.5%、2.5%和0.1%,第二次浮尘过程占比则依次为11.3%、2.6%和0.01%;两次浮尘过程气溶胶粒子性质有明显差异,第一次浮尘过程中粗粒子浓度占PM10的80%以上,第二次浮尘过程风向转变为偏北风,细粒子浓度增高至40%,气溶胶由单纯的沙尘气溶胶转变为沙尘-污染气溶胶。  相似文献   

5.
在沙尘源区,大气气溶胶粒子主要是地面沙尘来源,沙尘暴发生时气溶胶粒子的浓度大增,浓度峰值向粗粒径范围移动;在沙尘沉降区日本,当浮尘期时气溶胶粒子有地面沙尘和工业排放物两个来源,形成双峰型分布,当非浮尘期时气溶胶粒子主要以工业排放来源为主,在<2.1 um细粒径范围形成一个峰值.水溶性成分也不相同,沙尘源区粒子以Ca2+、SO42-、Na+、Cl-等沙尘来源离子为主,在3.3~4.7 um形成浓度峰值;沙尘沉降区以NH4+、SO42-、NO3-等工业来源离子为主,在0.65~1.01 um形成峰值.在日本即使是当浮尘时期,大气中的气溶胶粒子浓度也远远比不上沙尘源区沙尘暴发生时的大气气溶胶浓度.这说明能够到达日本沉降区的气溶胶粒子只是沙尘源区大气气溶胶中的很少一部分.  相似文献   

6.
无论有无沙尘暴,低层大气气溶胶粒子浓度几乎不随高度变化。在沙尘源区,大气气溶胶粒子主要来源于地面沙尘,沙尘暴发生时气溶胶粒子的浓度大增,浓度峰值向粗粒径范围移动;在沙尘沉降区日本,当浮尘期时气溶胶粒子有地面沙尘和工业排放物两个来源,形成双峰型分布,当非浮尘期时气溶胶粒子主要是工业排放物来源,在<2.1μm细粒径范围形成一个峰值。水溶性成分也不相同,沙尘源区粒子以Ca2+、SO2-4、Na+、Cl-等沙尘来源离子为主,在3 3~4 7μm形成浓度峰值;沙尘沉降区以NH+4、NO-3等工业来源离子为主,在<2 1μm形成峰4、SO2-值。沙尘源区气溶胶粒子水不溶相都表现出K、Na元素亏损的特征,说明其气溶胶粒子是上部陆壳经过K、Na大陆化学风化的产物。  相似文献   

7.
沙尘源区与沉降区气溶胶粒子的理化特征   总被引:8,自引:6,他引:2  
在沙尘源区 ,大气气溶胶粒子主要是地面沙尘来源 ,沙尘暴发生时气溶胶粒子的浓度大增 ,浓度峰值向粗粒径范围移动 ;在沙尘沉降区日本 ,当浮尘期时气溶胶粒子有地面沙尘和工业排放物两个来源 ,形成双峰型分布 ,当非浮尘期时气溶胶粒子主要以工业排放来源为主 ,在 <2 .1um细粒径范围形成一个峰值。水溶性成分也不相同 ,沙尘源区粒子以Ca2 +、SO42 -、Na+、Cl-等沙尘来源离子为主 ,在 3.3~ 4 .7um形成浓度峰值 ;沙尘沉降区以NH4+、SO42 -、NO3 -等工业来源离子为主 ,在 0 .6 5~ 1.0 1um形成峰值。在日本即使是当浮尘时期 ,大气中的气溶胶粒子浓度也远远比不上沙尘源区沙尘暴发生时的大气气溶胶浓度。这说明能够到达日本沉降区的气溶胶粒子只是沙尘源区大气气溶胶中的很少一部分  相似文献   

8.
塔克拉玛干沙漠中心的沙尘气溶胶观测研究   总被引:27,自引:17,他引:10  
沙尘气溶胶严重影响中国北方的空气质量,作为一种重要气溶胶并影响区域的辐射平衡。塔克拉玛干沙漠每年释放大量的沙尘气溶胶,而位于塔克拉玛干沙漠中心的塔中站,提供了对沙尘气溶胶的近距离观测。利用该站地面太阳光度计的观测数据分析了沙尘气溶胶的年变化特征,并分析了该站光学厚度、能见度、大气飘尘质量浓度(PM10)和大气总悬浮颗粒物浓度(TSP)之间的相关性。结果显示,气溶胶的440 nm光学厚度在春季最高、秋季最小,440 nm光学厚度与能见度呈现负幂函数关系,TSP与PM10呈现线形相关关系,PM10与能见度呈现负幂函数关系。  相似文献   

9.
塔里木盆地区域沙尘气溶胶特征分析   总被引:1,自引:7,他引:1  
沙尘天气是塔里木盆地地区常见的天气现象,对大气沙尘气溶胶的分析表明,沙尘暴期间,沙尘气溶胶浓度远大于非尘暴期间。由于两地地理环境的差异,沙尘暴期间,策勒站细颗粒质量百分比呈下降趋势;阿克苏站细颗粒质量百分比呈上升趋势。说明尘暴期间由于当地沙尘源丰富,细粒物质较多,当风速达到起沙风速时,细粒物质迅速被携带到高空,成为沙尘气溶胶的主要来源。阿克苏站大气气溶胶中Al等元素在不同高度的谱分布呈单峰型,浓度最大值出现在4.7-7.0μm范围内,说明当地大气气溶胶颗粒主要来源于地表沙源。富集因子分析表明,阿克苏站和策勒站沙尘暴和扬尘天气的各地壳元素含量均高于浮尘和背景大气,而且能见度愈小,高出的比例愈大;各种沙尘天气发生时,均以亲地元素的浓度为最高。  相似文献   

10.
额济纳地区沙尘气溶胶质量浓度特征初步分析   总被引:2,自引:1,他引:1  
为更好地理解亚洲沙尘源区气溶胶特征,在巴丹吉林沙漠边缘额济纳地区进行了野外观测。通过对沙尘源区之一的额济纳地区沙尘气溶胶的长期临测,获得了其区域代表性沙尘气溶胶理化特征。其TSP年变化以5月最大,9月最小,这与气象条件密切相关。针对典型天气过程的观测结果表明,不同天气条件(背景大气、浮尘、扬沙和沙尘暴)下TSP浓度存在倍数关系和量级的差异,其质量浓度随粒径的分布特征也明显不同。总体上讲,额济纳地区清洁大气中沙尘气溶胶浓度量级为10^2μg/m^3,而浮尘,扬沙及沙尘暴期间沙尘气溶胶质量浓度量级为10^2μg/m^3,超强沙尘暴沙尘质量浓度可达量级为10^4μg/m^4,在不同风向影响下,气溶胶粒径分布呈现不同特征;与沙坡头、敦煌地区相比,具有其独特的区域特性。  相似文献   

11.
石家庄地区沙尘天气分析   总被引:1,自引:0,他引:1  
针对近年来石家庄地区所出现的沙尘天气,利用17个县市的历史资料,从时空分布、出现原因、天气形势等几方面进行了分析。结果发现:近年石家庄沙尘天气总体减少,春季最多。扬沙和沙尘暴的地理分布取决于沙尘源的地理分布,而浮尘的地理分布则是与上游效应、风向和地形密切相关。上游效应对石家庄沙尘天气的形成有重要作用。产生沙尘的天气形势大部分与大风相同。  相似文献   

12.
近51a山西大风与沙尘日数的时空分布及变化趋势   总被引:2,自引:0,他引:2  
苗爱梅  贾利冬  武捷 《中国沙漠》2010,30(2):452-460
利用地面气象观测数据,以瞬时风速≥17.0m.s-1或风力≥8级的大风日数和沙尘天气发生日数为指标,分析了山西大风、沙尘天气的时空分布特征,沙尘天气的变化特点及趋势,并从现代气候变化、大气环流特征及大风日数变化等方面,初步探讨了沙尘天气日数变化的气候原因。分析结果表明,山西的沙尘暴、扬沙与大风日数具有同位相、一峰一谷的逐月变化特征,峰值均出现在4月,谷值均出现在8—9月。浮尘日数具有两峰两谷的逐月变化特征,主峰与主谷与大风出现的时间一致,次峰和次谷则分别出现在每年的12月和2月。大风日数的峰值分别是沙尘暴、扬沙日数峰值的8.39倍和2.31倍;大风日数的谷值分别是沙尘暴、扬沙日数谷值的83.3倍和18.98倍。沙尘暴、扬沙与大风日数均有北部多于南部的空间分布特征,浮尘则与大风相反具有南部多于北部的空间分布特征。山西的沙尘暴、扬沙总日数在20世纪90年代初期以后比50年代到70年代初期分别减少了84.9%和77.1%。多沙尘日数年大气环流的经向度较强,乌拉尔山高压脊偏强,东亚大槽位置偏西且加深,少沙尘日数年则相反。比较发现,沙尘暴、扬沙和大风日数的变化趋势有很好的一致性,线性相关系数分别达到0.80和0.82。这表明,山西沙尘暴和扬沙的变化趋势主要是随大风的变化而变化,高纬冷空气向南爆发的频数减少、势力偏弱、路径偏北导致山西风力条件的减弱是近51a沙尘暴、扬沙发生频数下降的主要原因。  相似文献   

13.
民勤一次沙尘暴天气过程的稳定度分析   总被引:10,自引:4,他引:6  
岳平  牛生杰  张强 《中国沙漠》2007,27(4):668-671
用2004年5月23—24日民勤基准气象站发生的一次沙尘暴天气过程加密探测,对大气热力参数“3 θ”和动力参数“相对风暴螺旋度”进行了计算和分析。结果表明:沙尘暴来临前到沙尘暴过境的前半期,大气温湿结构的分布有利于沙尘暴的发生、发展;沙尘暴过境的后期,大气层结调整到稳定状态,抑制了干对流的发展;沙尘暴天气结束后整层大气湿度增大,并出现了小雨天气。沙尘暴期间相对风暴螺旋度值小于雷暴等强烈湿对流的临界值,但仍然与沙尘暴的强度有很好的对应关系。  相似文献   

14.
塔里木盆地西部浮尘天气特征分析   总被引:8,自引:6,他引:2  
分析了1961—2003年塔里木盆地西部11个气象观测站的浮尘天气现象资料,给出了近43 a来塔里木盆地西部浮尘天气的时空分布特征及其变化特征,并分析了气候变化与浮尘的关系。结果表明:塔里木盆地西部浮尘发生频率相当高,时空分布不均;年际变化率较大,持续时间较长;年浮尘日数除了莎车在波动中缓慢增加外,其他各站均在波动中逐渐减少;浮尘与大风表现出明显的正相关,与年降水量和春季降水量表现出明显的负相关。  相似文献   

15.
基于站点观测的沙尘暴数据和卫星遥感(FY-3A)的沙尘数据,分析了青藏高原及塔里木盆地-河西走廊沙尘天气的时空分布特征。结果表明:在空间分布上,沙尘天气发生的次数和强度自塔里木盆地-河西走廊往青藏高原的东南方向递减。季节变化上,沙尘暴在青藏高原主要发生在冬、春季,而在塔里木盆地-河西走廊主要发生在春、夏季,这主要是由于地表大风中心在3月北移、10月南移; FY-3A反演的沙尘天气在两个区域均主要发生在冬、春季,发生强度与观测结果在季节变化上也存在差异。在1980—2007年,青藏高原的沙尘暴发生次数和强度上均呈减弱趋势,塔里木盆地-河西走廊的沙尘暴发生次数减弱而强度增强。  相似文献   

16.
河西走廊东部沙尘暴预报方法研究   总被引:18,自引:8,他引:10  
利用我国沙尘暴多发区, 甘肃省河西走廊东部民勤、凉州区等五站近50a的气象资料, 详细分析了河西东部沙尘暴频繁发生的气象因素, 应用近20a的天气资料, 结合近50a的典型个例做出沙尘暴的长期、中期、短期和短时预报预警系统。研究结果表明: 长期预报取决于冬春季气温、降水量和大风日数; 中期依靠使用国内外数值预报产品; 短期与大气环流条件、分型指标有关; 短时临近预报与高空大风形势、地面上游有无大风沙尘暴天气有关。  相似文献   

17.
影响中国西北及青藏高原沙尘天气变化的因子分析   总被引:5,自引:3,他引:2  
任余龙  王劲松 《中国沙漠》2009,29(4):734-743
利用1948—2006年的NCEP(2.5°×2.5°)月平均再分析资料,分析了影响西北及青藏高原沙尘天气变化的动力、热力因子。结果表明:①200 hPa副热带西风急流是影响沙尘天气的动力因子,高层天气系统的季节性变化,导致了其位置及强弱的季节性变化,从而导致了高原南部扬沙、沙尘暴季节性南北移动;急流的动力结构使局地环流得以形成,局地环流的下沉支流使得高空动量下传,使地面风速增大,从而使扬沙和沙尘暴发生。②浮尘和扬沙、沙尘暴天气成因有所不同,地表温度等热力因素对浮尘天气有直接影响;而急流等动力因子则影响浮尘天气的频率,对发生范围影响较小;动力因子是扬沙、沙尘暴发生的直接原因;500 hPa锋生函数大值带的季节性南北移动也是扬沙、沙尘暴南北季节性变化的重要原因。③500 hPa水汽输送带的边缘是扬沙和沙尘暴容易发生的区域。④地表湿度是沙尘天气发生的一个因子,当地表较干时,沙尘天气发生频率增加,而当地表湿度增大时,沙尘天气发生的频率减小。  相似文献   

18.
利用1961—2005年西北及内蒙古地区208个地面气象站春季沙尘暴日数的观测资料,对沙尘暴发生的年代际变化进行了分析。结果显示,20世纪60年代和70年代沙尘暴偏多,80年代沙尘暴开始减少,90年代最少,21世纪的前5 a沙尘暴呈现出先增多后减少的趋势。基于1961—2005年的NCEP资料进行了原因探析,结果表明:①在沙尘暴多发年代,我国北方大部分区域风速出现了正距平,而在沙尘暴少发的年代,风速呈现出负距平;②在沙尘暴多发的年代,我国中高纬地区出现明显的气旋性流场距平,其南侧西风增强了我国西北及内蒙古地区偏西风风速,而在沙尘暴少发的年代,则与之相反;③极锋锋区在60—70年代强度偏强,从80年代开始强度呈现出明显的减弱趋势,21世纪初期锋区强度继续减弱,但其中心位置有小幅的自北向南移动。  相似文献   

19.
浑善达克沙地春季沙尘暴期间沙尘启动及传输特性研究   总被引:18,自引:15,他引:3  
岳平  牛生杰  刘晓云 《中国沙漠》2008,28(2):227-230
沙尘暴是一种强烈的风蚀过程,同时又加剧了荒漠化进程。沙尘气溶胶的生态环境及气候效应已成为国际社会关注的焦点问题。采用“IMGRASS”春季野外实验期间在内蒙古浑善达克沙地东南部的桑根达来观测点得到的沙尘气溶胶的粒谱,计算了该沙地10 m高度的沙粒启动速度,并估算了该沙地沙尘气溶胶的传输距离。  相似文献   

20.
西北地区大风日数的时空分布特征   总被引:31,自引:2,他引:29  
利用选取的西北5省(区)以及内蒙古西部(110°E以西)分布均匀的127个气象站1960-2000年41a逐月大风出现日数资料, 分析研究了西北地区大风的空间、时间特征, 并具体分析了大风与沙尘暴的时空关系, 揭示了西北地区大风分布的一些新事实。西北大风天气可划分为较少区(年均大风日数小于10d)、较多区(年均大风日数10~50d)、多发区(年均大风日数50~100d)和频发区(年均大风日数大于100d)。西北地区大部分区域为大风较多区, 占总站数的614%, 大风频发区分布最小; 大风最频繁发生的地方在新疆西北部的阿拉山口, 年平均大风日数超过160d, 平均不到3d就有一次大风天气, 大风日数最少的地方是陕西北部延安, 平均每年发生大风天气的日数不到1d。大风日数空间分布与地形有很大关系, 两山之间的峡谷地带以及高山和青藏高原极易出现大风天气。西北地区多数台站近40a来大风呈减少趋势, 其中新疆西北部、甘肃河西走廊西部和陕西东部等地区减少最为明显, 大风增加的区域主要集中在新疆东北部到青海西部地区, 其代表站年均大风日数从20世纪60年代到80年代中期以后增加了近3倍, 达到190d。总体来讲, 西北地区大风天气最多的季节是春季, 以5月最多, 其次是夏季, 秋、冬季特别是秋季大风最少; 陕西、甘肃中南部夏季大风较多, 青海东南部则夏季最最少, 冬季大风更多一些。进一步分析表明, 西北地区大风频发区与沙尘暴频发区并不完全重合, 例如, 南疆是西北乃至我国沙尘暴最频发区之一, 但是南疆却是西北地区大风的较少区, 年大风日数远少于沙尘暴日数。同样是沙源丰富的沙漠地区, 也都是我国沙尘暴的主要频发区, 但是塔克拉玛干沙漠及其附近地区的沙尘暴日数远多于大风日数, 而巴丹吉林沙漠地区的大风日数却比沙尘暴日数明显偏多。最近40 a西北地区大风与沙尘暴发生次数随时间变化趋势一致, 基本呈线性减少特征, 这说明在下垫面状况不变或变化不大的情况下, 近年来沙尘暴次数减少可能主要是由于大风天气(沙尘暴驱动因子)减少而造成的。大风的时间变化可以决定沙尘暴随时间的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号