首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2001,14(1-3):177-195
The east Anatolian plateau and the Lesser Caucasus are characterised and shaped by three major structures: (1) NW- and NE-trending dextral to sinistral active strike-slip faults, (2) N-S to NNW-trending fissures and /or Plio-Quaternary volcanoes, and (3) a 5-km thick, undeformed Plio-Quaternary continental volcano-sedimentary sequence accumulated in various strike-slip basins. In contrast to the situation in the east Anatolian plateau and the Lesser Caucasus, the Transcaucasus and the Great Caucasus are characterised by WNW-trending active thrust to reverse faults, folds, and 6-km thick, undeformed (except for the fault-bounded basin margins) continuous Oligocene-Quaternary molassic sequence accumulated in actively developing ramp basins. Hence, the neotectonic regime in the Great Caucasus and the Transcaucasus is compressional–contractional, and Oligocene-Quaternary in age; whereas it is compressional–extensional, and Plio-Quaternary in age in the east Anatolian plateau and the Lesser Caucasus.Middle and Upper Miocene volcano-sedimentary sequences are folded and thrust-to-reverse-faulted as a result of compressional–contractional tectonic regime accompanied by mostly calc-alkaline volcanic activity, whereas Middle Pliocene-Quaternary sequences, which rest with angular unconformity on the pre-Middle Pliocene rocks, are nearly flat-lying and dominated by strike-slip faulting accompanied by mostly alkali volcanic activity implying an inversion in tectonic regime. The strike-slip faults cut and displace dykes, reverse to thrust faults and fold axes of Late Miocene age up to maximum 7 km: hence these faults are younger than Late Miocene, i.e., these formed after Late Miocene. Therefore, the time period between late Serravalian (∼ 12 Ma) continent–continent collision of Arabian and Eurasian plates and the late Early Pliocene inversion in both the tectonic regime, basin type and deformation pattern (from folding and thrusting to strike-slip faulting) is here termed as the Transitional period.Orientation patterns of various neotectonic structures and focal mechanism solutions of recent earthquakes that occurred in the east Anatolian plateau and the Caucasus fit well with the N–S directed intracontinental convergence between the Arabian plate in the south and the Eurasian plate in the north lasting since Late Miocene or Early Pliocene in places.  相似文献   

2.
The synorogenic basins of central Cuba formed in a collision-related system. A tectono-stratigraphic analysis of these basins allows us to distinguish different structural styles along the Central Cuban Orogenic Belt. We recognize three distinct structural domains: (1) the Escambray Metamorphic Complex, (2) the Axial Zone, and (3) the Northern Deformation Belt. The structural evolution of the Escambray Metamorphic Complex includes a latest Cretaceous compressional phase followed by a Palaeogene extensional phase. Contraction created an antiformal stack in a subduction environment, and extension produced exhumation in an intra-arc setting. The Axial Zone was strongly deformed and shortened from the latest Cretaceous to Eocene. Compression occurred in an initial phase and subsequent transpressive deformation took place in the middle Eocene. The Northern Deformation Belt consists of a thin-skinned thrust fault system formed during the Palaeocene to middle Eocene; folding and faulting occurred in a piggyback sequence with tectonic transport towards the NNE. In the Central Cuban Orogenic Belt, some major SW–NE structures are coeval with the Cuban NW–SE striking folds and thrusts, and form tectonic corridors and/or transfer faults that facilitated strain-partitioning regime attending the collision. The shortening direction rotated clockwise during deformation from SSW–NNE to WSW–ENE. The synchronicity of compression in the north with extension in the south is consistent with the opening of the Yucatan Basin; the evolution from compression–extension to transpression is in keeping with the increase in obliquity in the collision between the Caribbean and North American plates.  相似文献   

3.
The study area is the Van earthquake region. It is located in the western section of the East Anatolian–Iranian plateau outside and to the east of the Karlıova triple junction. Based on the tectonic periods, the rock units exposed in the study area are classified into two common categories. These are the Pre-Late Pliocene paleotectonic units and the Plio-Quaternary neotectonic units. The Paleotectonic units are composed of the Yüksekova Complex of Campanian–Maastrichtian age and the Kırkgeçit Formation of Oligo-Miocene age. The paleotectonic units are intensely deformed (folded, thrust to reverse faulted and converted into an imbricate stack). The neotectonic units are composed of fluvio-lacustrine sedimentary facies with volcanic interclations. It is full of soft-sedimentary structures such as deltaic structure, slump fold, sand dikes to sills and normal to reverse types of growth faults which imply to a sedimentation accompanied by both a volcanic activity and active tectonics. Originally the Paleotectonic units are overlain with an angular unconformity by the nearly flat-lying neotectonic units. This angular unconformity and the big difference in the deformational patterns of both categories of rock units indicate an inversion in tectonic regime in Late Pliocene. The new tectonic regime is the strike-slip faulting-dominated neotectonic regime. It is governed by an approximately N–S-directed compression, and composed of NW- to NE-trending strike-slip faults, N–S trending oblique-slip normal faults to fissures and the E–W trending thrust to reverse faults. Most of thrust to reverse faults are inherited from the Pre-Late Pliocene paleotectonic regime. Some of them have reactivated and led to the occurrence of large and devastative earthquakes. The last devastative seismic event is the 23 October 2011 Tabanlı (Van) earthquake of Mw = 7.2 that caused 644 deaths and moderate to heavy damage of ¼ of structures (28,532) in Van earthquake region. The source of the Tabanlı earthquake is the Everek erosional reverse fault. In addition the Tabanlı earthquake is the largest seismic event occurred till now in Turkey. It was followed by a series (over 6000) of small-sized aftershocks and severeal moderate-sized indepentent earthquakes of reverse, normal and strike-slip faulting origin. Both the field and new seismic data strongly reveal that the prominent tectonic regime in the East Anatolian plateau is the strike-slip neotectonic regime, not the tensional tectonic regime as has been reported in some previous works. The strike-slip faulting and related deformation are confined into the upper shallowing part (up to 40 km) of the crust, whilst the extensional deformations are the subcrustal processes and being taking place in a squashy zone at the depths of approximately 40–60 km.  相似文献   

4.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

5.
The ca. 700-km-long Yalu River Fault Zone (YRFZ) in East China, adjacent to the Pacific Ocean, underwent a polyphase evolution during the Cretaceous when it controlled the development of rift basins interrupted by several shortening events. The East China continent lies in an overriding plate with respect to the subducting Paleo-Pacific Plate during the Cretaceous. The YRFZ is ideal for studying the episodicity of stress state in the overriding plate. To constrain the polyphase evolution of the YRFZ, structural observations, fault-slip data measurements and LA–ICP–MS zircon U–Pb dating on Cretaceous volcanic rocks and sandstones were undertaken in this study. The first deformation (D1) is characterized by sinistral strike-slip shear in the earliest Cretaceous. The D2 event is featured by normal faulting deformation along the fault zone, which led to development of rift basins during the rest of the Early Cretaceous. Sinistral faulting (D3) developed again in the earliest Late Cretaceous, followed by dextral normal faulting (D4) and rift basin development during the rest of the Late Cretaceous, and finally reverse dextral faulting (D5) at the end of the Cretaceous. The fault-slip data show that compressional directions during D1, D3 and D5 faulting events are N–S, N–S and E–W respectively. Extensional directions during D2 and D4 faulting events are NW–SE and N–S. The zircon U–Pb ages indicate that the Early Cretaceous basins (D2 event) controlled by the YRFZ were active between 131 and 100 Ma, and the Late Cretaceous basins (D4 event) were active between 97 and 70 Ma. These U–Pb ages, together with previous geochronological data, show that the D1 and D3 episodes of compression each lasted 3 Ma, D2 extension lasted 31 Ma, and D4 extension 27 Ma. These data indicate an episodicity in the stress state with longer periods of extension and shorter periods of compression. A slab-driven model with relatively long periods of low-velocity subduction alternating with shorter periods of high-velocity subduction could account for the episodicity of stress state in the overriding plate from D1 to D5.  相似文献   

6.
The NW-SE oriented Sorgenfrei–Tornquist Zone (STZ) has been thoroughly studied during the last 25 years, especially by means of well data and seismic profiles. We present the results of a first brittle tectonic analysis based on about 850 dykes, veins and minor fault-slip data measured in the field in Scania, including paleostress reconstruction. We discuss the relationships between normal and strike-slip faulting in Scania since the Permian extension to the Late Cretaceous–Tertiary structural inversions. Our paleostress determinations reveal six successive or coeval main stress states in the evolution of Scania since the Permian. Two stress states correspond to normal faulting with NE-SW and NW-SE extensions, one stress state is mainly of reverse type with NE-SW compression, and three stress states are strike-slip in type with NNW-SSE, WNW-ESE and NNE-SSW directions of compression.The NE-SW extension partly corresponds to the Late Carboniferous–Permian important extensional period, dated by dykes and fault mineralisations. However extension existed along a similar direction during the Mesozoic. It has been locally observed until within the Danian. A perpendicular NW-SE extension reveals the occurrence of stress permutations. The NNW-SSE strike-slip episode is also expected to belong to the Late Carboniferous–Permian episode and is interpreted in terms of right-lateral wrench faulting along STZ-oriented faults. The inversion process has been characterised by reverse and strike-slip faulting related to the NE-SW compressional stress state.This study highlights the importance of extensional tectonics in northwest Europe since the end of the Palaeozoic until the end of the Cretaceous. The importance and role of wrench faulting in the tectonic evolution of the Sorgenfrei–Tornquist Zone are discussed.  相似文献   

7.
Based on detailed structural data and available tectonic chronological data from the Dangyang Basin, the authors propose that the north-central Yangtze craton experienced three stages of tectonic evolution since Late Triassic time. In the Late Triassic to Early Jurassic (T3–J1), due to the Indosinian orogeny, nearly N–S compression and shortening occurred, which initiated the Dangyang Basin as a foreland basin of the Qinling–Dabie orogen. During the Late Jurassic–Early Cretaceous (J3–K1) period, the Yanshanian intracontinental orogeny caused contemporaneous NE–SW and NW–SE shortening, which resulted in intense folding of the foreland basin; contraction formed a brush structure diverging in a SE direction and strongly converging in a NW direction around the Huangling anticline. In the Late Cretaceous to Palaeogene, the Yuan'an and Hanshui grabens were separated from other parts of the Dangyang Basin due to post-orogenic ENE–WSW extension. Finally, at the end of the Palaeogene, ENE–WSW shortening led to inversion and deformation of the grabens.  相似文献   

8.
Various earthquake fault types, mechanism solutions, stress field, and other geophysical data were analyzed for study on the crust movement in the Tibetan plateau and its tectonic implications. The results show that numbers of thrust fault and strike-slip fault type earthquakes with strong compressive stress near NNE-SSW direction occurred in the edges around the plateau except the eastern boundary. Some normal faulting type earthquakes concentrate in the Central Tibetan plateau. The strikes of fault planes of thrust and strike-slip faulting earthquakes are almost in the E-W direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. This implies that the dislocation slip vectors of the thrust and strike-slip faulting type events have quite great components in the N-S direction. The compression motion mainly probably plays the tectonic active regime around the plateau edges. The compressive stress in N-S or NE-SW directions predominates earthquake occurrence in the thrust and strike-slip faulting event region around the plateau. The compressive motion around the Tibetan plateau edge is attributable to the northward motion of the Indian subcontinent plate. The northward motion of the Tibetan plateau shortened in the N-S direction encounters probably strong obstructions at the western and northern margins.  相似文献   

9.
The Qinling Orogenic belt has been well documented that it was formed by multiple steps of convergence and subsequent collision between the North China and South China Blocks during Paleozoic and Late Triassic times. Following the collision in Late Triassic times, the whole range evolved into an intracontinental tectonic process. The geological, geophysical and geochronological data suggest that the intracontinental tectonic evolutionary history of the Qinling Orogenic Belt allow deduce three stages including strike-slip faulting during Early Jurrassic, N-S compressional deformation during Late Jurassic to Early Cretaceous and orogenic collapse during Late Cretaceous to Paleogene. The strike-slip faulting and the infills in Early Jurassic along some major boundary faults show flower structures and pull-apart basins, related to the continued compression after Late Triassic collision between the South Qinling Belt and the South China Block along the Mianlue suture. Late Jurassic to Early Cretaceous large scale of N-S compression and overthrusting progressed outwards from inner of Qinling Orogen to the North China Block and South China Block, due to the renewed southward intracontinental subduction of the North China Block beneath the Qinling Orogenic Belt and continuously northward subduction of the South China Block, respectively. After the Late Jurassic-Early Cretaceous compression and denudation, the Qinling Orogenic Belt evolved into Late Cretaceous to Paleogene orogen collapse and depression, and formed many large fault basins along the major faults.  相似文献   

10.
梁承华  徐先兵  李启铭  桂林  汤帅 《地球科学》2019,44(5):1761-1772
华南中-新生代构造演化受太平洋构造域和特提斯洋构造域的联合控制.以江南东段NE-SW向景德镇-歙县剪切带和球川-萧山断裂中发育的脆性断层为研究对象,利用野外交切关系和断层滑移矢量反演方法厘定了7期构造变形序列并反演了各期古构造应力场,讨论了断层活动的时代及其动力学.白垩纪至新生代研究区7期古构造应力场分别为:(1)早白垩世早期(136~125Ma)NW-SE向伸展;(2)早白垩世晚期(125~107Ma)N-S向挤压和E-W向伸展;(3)早白垩世末期至晚白垩世早期(105~86Ma)NW-SE向伸展;(4)白垩世中期(86~80Ma)NW-SE向挤压和NE-SW向伸展;(5)晚白垩世晚期至始新世末期(80~36Ma)N-S向伸展;(6)始新世末期至渐新世早期(36~30Ma)NE-SW向挤压和NW-SE向伸展;(7)渐新世早期至中新世中期(30~17Ma)NE-SW向伸展.结合区域地质研究表明,第1期至第4期古构造应力场与古太平洋构造域的板片后撤、俯冲以及微块体(菲律宾地块)间的碰撞作用有关;第5期伸展作用受控于新特提斯构造域俯冲板片后撤,而第6期和第7期古构造应力场主要与印-亚碰撞的远程效应有关.白垩纪至新生代,华南东部受伸展构造体制和走滑构造体制的交替控制.先存断裂的发育可能是导致华南晚中生代走滑构造体制的主要控制因素.  相似文献   

11.
The increasing number of earthquakes in recent decades in Northwestern Iran and the determination of the epicenters of these events makes possible to estimate accurately the changing tectonic regime using the Win-Tensor inversion focal mechanism program. For this purpose focal mechanism data were collected from various sources, including the Centroid Moment Tensor catalog (CMT). The focal mechanism and fault slip data were analyzed to determine change in the stress field up to the present day. The results showed that two stages of brittle deformation occurred in the region. The first stage was related to Eocene compression in NE–SW direction, which created compressional structures with NW–SE strike, including the North and South Bozgush, south Ahar and Gushedagh thrust belts. The second brittle stage began in the Miocene with NW–SE compression and caused developing thrusts with N–S trends that were active presently. These stress regimes were created by the counter-clockwise rotation of the Azerbaijan plateau caused by movement on strike slip faults and continuous compression between the Arabian plate, the south Caspian basin and the Caucasus region. Pliocene-Quaternary activity of the Sabalan and Sahand volcanoes as well as recent earthquakes occurred as a result of this displacement and rotational movement. The abundance of hot springs in the Ardebil, Hero Abad and Bostanabad areas also bore witness to this activity.  相似文献   

12.
《Geodinamica Acta》2000,13(4):189-245
3D stratigraphic geometries of the intracratonic Meso-Cenozoic Paris Basin were obtained by sequence stratigraphic correlations of around 1 100 wells (well-logs). The basin records the major tectonic events of the western part of the Eurasian Plate, i.e. opening and closure of the Tethys and opening of the Atlantic. From earlier Triassic to Late Jurassic, the Paris Basin was a broad subsiding area in an extensional framework, with a larger size than the present-day basin. During the Aalenian time, the subsidence pattern changes drastically (early stage of the central Atlantic opening). Further steps of the opening of the Ligurian Tethys (base Hettangian, late Pliensbachian;...) and its evolution into an oceanic domain (passive margin, Callovian) are equally recorded in the tectono-sedimentary history. The Lower Cretaceous was characterized by NE–SW compressive medium wavelength unconformities (late Cimmerian–Jurassic/Cretaceous boundary and intra-Berriasian and late Aptian unconformities) coeval with opening of the Bay of Biscay. These unconformities are contemporaneous with a major decrease of the subsidence rate. After an extensional period of subsidence (Albian to Turonian), NE–SW compression started in late Turonian time with major folding during the Late Cretaceous. The Tertiary was a period of very low subsidence in a compressional framework. The second folding stage occurred from the Lutetian to the Lower Oligocene (N–S compression) partly coeval with the E–W extension of the Oligocene rifts. Further compression occurred in the early Burdigalian and the Late Miocene in response to NE–SW shortening. Overall uplift occurred, with erosion, around the Lower/Middle Pleistocene boundary.  相似文献   

13.
Based on field analysis of fault-slip data from different rock units of the Cretaceous basins along the middle part of the Tan-Lu fault zone (Shandong Province, eastern China), we document polyphase tectonic stress fields and address the changes in sense of motion of the Tan-Lu fault zone during the Cretaceous. The Cretaceous deformation history of the Tan-Lu fault zone can be divided into four main stages. The first stage, during the earliest Cretaceous, was dominated by N-S extension responsible for the formation of the Jiaolai basin. We interpret this extension to be related to dextral strike-slip pull-apart opening guided by the Tan-Lu fault zone. The second stage, during the middle Early Cretaceous, was overwhelmingly rift-dominated and characterized by widespread silicic to intermediate volcanism, normal faulting and basin subsidence. It was at this stage that the Tan-Lu-parallel Yi-Shu Rift was initiated by E-W to WNW-ESE extension. The tectonic regime then changed during the late Early Cretaceous to NW-SE-oriented transpression, causing inversion of the Early Cretaceous rift basin and sinistral slip along the Tan-Lu fault zone. During the Late Cretaceous, dextral activation of the Tan-Lu fault zone resulted in pull-apart opening of the Zhucheng basin, which was subsequently deformed by NE-SW compression. This deformation chronology of the Tan-Lu fault zone and the associated Cretaceous basins allow us to constrain the regional kinematic models as related to subduction along the eastern margin of Asia, or related to collision in the Tibet region.  相似文献   

14.
The Tunisian domain is formed following the convergence between Nubia and Eurasia which is responsible for folding and still active faulting. We used 62 earthquake focal mechanisms to constrain the present stress field of the Tunisian domain. The results show that the tectonic regime is compressional with a dominant direction NW-SE maximum horizontal principal stress direction. The focal depth distribution indicates that Northern Tunisia is an area of convergence with a thin crust and a shallow Moho. However, in the central and southern Atlas, the presence of focal mechanisms with strike-slip faulting shows that this zone is a deep seismogenic area with a thick crust.These results are consistent with the neotectonic and seismotectonic stress field determined by other studies. The neotectonic deformations of Tunisia are like the past deformations guided by the convergence between the African and the Eurasian plates.  相似文献   

15.
The Thakkhola–Mustang graben is located at the northern side of the Dhaulagiri and Annapurna ranges in North Central Nepal. The structural pattern is mainly characterised by the N020–040° Thakkhola Fault system responsible for the development of the half-graben. A detailed study of the substrate and the sedimentary fill in several outcrops indicates polyphased faulting:-pre-sedimentation faulting (Miocene), with a mainly NNW–SSE to N–S compressional stress expressed in the substratum by N020–040° and N180–N010° sinistral and N130–140° dextral conjugate strike-slip faults;-syn-sedimentation faulting (Pliocene–Pleistocene), characterised by a W–E to WNW–ESE extensional stress and tectonic subsidence of the half-graben during the Tetang period (Pliocene probably), followed by a doming of the Tetang deposits and a short period of erosion (cf. Pliocene planation surface and unconformity between the Tetang and Thakkhola Formations); the Thakkhola period (Pleistocene) is characterized by a W–E to WNW–ESE extensional stress and a major subsidence of the half graben;-post-sedimentation recurrent extensional faulting and N–S and NE–SW normal faults in the late Quaternary terrace formations.Geodynamic interpretation of the faulting is discussed in relation to the following:
  • 1.the geographic situation of the Thakkhola–Mustang half-graben in the southern part of Tibet and its setting in the Tethyan series above the South Tibetan Detachment System (STDS);
  • 2.the geodynamic conditions of the convergence between India and Eurasia and the dextral east–west shearing between the High Himalayas and south Tibet;
  • 3.the possible relations between the sinistral Thakkhola and the dextral Karakorum strike-slip faults in a N–S compressional stress regime during the Miocene.
  相似文献   

16.
Recently acquired 2-D seismic profiles in the offshore area between Bondoc Peninsula and Burias Island, South Luzon, Philippines, are interpreted in the context of known structural styles observed onshore and in relation to paleo- and neo-tectonic regimes in the region. Two distinct seismic sequences can be distinguished relative to their structural style and tectonic significance. The top of a lower sequence shows strongly reflective properties. This unit, correlative to Late Oligocene to Early Miocene limestone bodies observed onshore in Bondoc Peninsula and Burias Island, is affected by intense to moderate superposed folding and thrust faulting. An upper sequence, correlative to a two-member turbiditic and shallower marine clastic deposit widely exposed in Bondoc Peninsula, is affected by thrust faulting and deformation associated with overturned tight folding. The onshore equivalents of these two seismic sequences form the core of a bent anticlinorium that twists from a NW–SE axis in onshore Bondoc into a N–S axis southwards into the southern tip of the peninsula, then back to a NW–SE axis in the offshore region further to the south. Overlying this structural core is a relatively less deformed sequence where syn-sedimentary half-grabens are still preserved in places. This complex structural style is the result of a series of several tectonic events occurring from the Eocene to the Present, involving carbonate build-up, deep water turbidite deposition, consequent compression (folding and faulting), and late-event half graben-controlled deposition. Some resulting structures are indicative of tectonic inversion processes (positive and negative) which may prove to be potentially favorable in the search for structural plays in the area.  相似文献   

17.
In this research, we have focused on the geometrical characteristics of young faults in North Tehran tectonic wedge which is confined with the Mosha and North Tehran faults, the most outstanding active faults in Alborz fold-thrust belt. The statistical, genetic, and kinematic relationships between internal faults, boundary faults, and the stress regime in the area (at the finite state of deformation path) are considered in detail with the help of rose diagrams and Riedel??s model. On this basis, all faults with diverse mechanisms have been classified into different Riedel fractures and their orders of formation are identified. Pattern of faults implies a more or less N?CS compression at the period of faulting. Consideration of geometry and tectonic setting of abundant normal faults have led to propose folding and listric faulting model to explain the origin of normal faults in a compressional tectonic region. These structural models represent the mechanism of normal faulting in response to compression in crustal and upper crustal scales, respectively.  相似文献   

18.
Based on the concept of tectonic delamination of the lithosphere, we revealed that the Sea of Japan and the Sea of Okhotsk were formed as a result of the tectonic flow of crustal material. The intermittent southward movement of southwestern Japan (Late Cretaceous–Cenozoic) along the eastern Japanese leftlateral strike-slip fault zone resulted in the formation of paired structures: back-arc extensional (Central Japan rift) and frontal compressional (South Japan imbricate–thrust belt) structures. The Sea of Okhotsk was formed in a similar tectonic setting: South Okhotsk rift (back-arc extensional structure) and Kamuikotan–Susunai compressional belt (frontal imbricate-thrust structure). Synchronous extension, compression, and strike-slip movements suggest that the tectonic flow of crustal material played a critical role in the formation of the Sea of Japan and the Sea of Okhotsk.  相似文献   

19.
A Mw 6.3 magnitude earthquake occurred on October 6, 2008 in southern Damxung County within the N–S trending Yangyi graben, which forms the northern section of the Yadong-Gulu rift of south-central Tibet. The earthquake had a maximum intensity of IX at the village of Yangyi (also Yangying) (29°43.3′N; 90°23.6′E) and resulted in 10 deaths and 60 injured in this sparsely populated region. Field observations and focal mechanism solutions show normal fault movement occurred along the NNE-trending western boundary fault of the Yangyi graben, in agreement with the felt epicenter, pattern of the isoseismal contours, and distribution of aftershocks. The earthquake and its tectonic relations were studied in detail to provide data on the seismic hazard to the nearby city of Lhasa.The Damxung earthquake is one of the prominent events along normal and strike-slip faults that occurred widely about Tibet before and after the 2008 Mw 7.9 magnitude Wenchuan earthquake. Analysis of these recent M ? 5.0 earthquake sequences demonstrate a kinematic relation between the normal, strike-slip, and reverse causative fault movements across the region. These earthquakes are found to be linked and the result of eastward extrusion of two large structural blocks of central Tibet. The reverse and oblique-slip surface faulting along the Longmenshan thrust belt at the eastern margin of the Tibetan Plateau causing the Wenchuan earthquake, was the result of eastward directed compression and crustal shortening due to the extrusion. Prior to it, east–west extensional deformation indicated by normal and strike-slip faulting events across central Tibet, had led to a build up of the compression to the east. The subsequent renewal of extensional deformational events in central Tibet appears related to some drag effect due to the crustal shortening of the Wenchuan event. Unraveling the kinematical relation between these earthquake swarms is a very helpful approach for understanding the migration of strong earthquakes across Tibet.  相似文献   

20.
《International Geology Review》2012,54(13):1602-1629
Widespread Cretaceous volcanic basins are common in eastern South China and are crucial to understanding how the Circum-Pacific and Tethyan plate boundaries evolved and interacted with one another in controlling the tectonic evolution of South China. Lithostratigraphic units in these basins are grouped, in ascending order, into the Early Cretaceous volcanic suite (K1V), the Yongkang Group (K1-2), and the Jinqu Group (K2). SHRIMP U-Pb zircon geochronological results indicate that (1) the Early Cretaceous volcanic suite (K1V) erupted at 136–129 Ma, (2) the Yongkang Group (K1-2) was deposited from 129 Ma to 91 Ma, and (3) the deposition of the Jinqu Group (K2) post-dated 91 Ma. Structural analyses of fault-slip data from these rock units delineate a four-stage tectonic evolution of the basins during Cretaceous to Palaeogene time. The first stage (Early to middle Cretaceous time, 136–91 Ma) was dominated by NW–SE extension, as manifested by voluminous volcanism, initial opening of NE-trending basins, and deposition of the Yongkang Group. This extension was followed during Late Cretaceous time by NW–SE compression that inverted previous rift basins. During the third stage in Late Cretaceous time, possibly since 78.5 Ma, the tectonic stress changed to N–S extension, which led to basin opening and deposition of the Jinqu Group along E-trending faults. This extension probably lasted until early Palaeogene time and was terminated by the latest NE–SW compressional deformation that caused basin inversion again. Geodynamically, the NW–SE-oriented stress fields were associated with plate kinematics along the Circum-Pacific plate boundary, and the extension–compression alternation is interpreted as resulting from variations of the subducted slab dynamics. A drastic change in the tectonic stress field from NW–SE to N–S implies that the Pacific subduction-dominated back-arc extension and shortening were completed in the Late Cretaceous, and simultaneously, that Neo-Tethyan subduction became dominant and exerted a new force on South China. The ongoing Neo-Tethyan subduction might provide plausible geodynamic interpretations for the Late Cretaceous N–S extension-dominated basin rifting, and the subsequent Cenozoic India–Asia collision might explain the early Palaeogene NE–SW compression-dominated basin inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号