首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Excessive application of poultry litter to pastures in the Sand Mountain region of north Alabama has resulted in phosphorus (P) contamination of surface water bodies and buildup of P in soils of this region. Since surface runoff is recognized as the primary mechanism of P transport, understanding surface runoff generation mechanisms are crucial for alleviating water quality problems in this region. Identification of surface runoff generation mechanisms is also important for delineation of hydrologically active areas (HAAs). Therefore, the specific objective of this study was to identify surface runoff generation mechanisms (infiltration excess versus saturation excess) using distributed surface and subsurface sensors and rain gauge. Results from three rainfall events (2·13–3·43 cm) of differing characteristics, and sensor data at four locations with differing soil hydraulic properties along the hillslope showed that the main surface runoff generation mechanism in this region is infiltration excess. Because of this, rainfall intensity and soil hydraulic conductivity were found to play dominant roles in surface runoff generation in this region. Further, only short periods of a few rainfall events during which the rainfall intensity is high produce surface runoff. This study indicates that perhaps subsurface flows and transport of P in subsurface flows need to be quantified to reduce P contamination of surface water bodies in this region. Current studies at this location are identifying spatial and temporal distribution of HAAs, quantifying rainfall characteristics that generate runoff, and estimating runoff volume that results from connected HAAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
To predict the long‐term sustainability of water resources on the Boreal Plain region of northern Alberta, it is critical to understand when hillslopes generate runoff and connect with surface waters. The sub‐humid climate (PET) and deep glacial sediments of this region result in large available soil storage capacity relative to moisture surpluses or deficits, leading to threshold‐dependent rainfall‐runoff relationships. Rainfall simulation experiments were conducted using large magnitude and high intensity applications to examine the thresholds in precipitation and soil moisture that are necessary to generate lateral flow from hillslope runoff plots representative of Luvisolic soils and an aspen canopy. Two adjacent plots (areas of 2·95 and 3·4 m2) of contrasting antecedent moisture conditions were examined; one had tree root uptake excluded for two months to increase soil moisture content, while the second plot allowed tree uptake over the growing season resulting in drier soils. Vertical flow as drainage and soil moisture storage dominated the water balances of both plots. Greater lateral flow occurred from the plot with higher antecedent moisture content. Results indicate that a minimum of 15–20 mm of rainfall is required to generate lateral flow, and only after the soils have been wetted to a depth of 0·75 m (C‐horizon). The depth and intensity of rainfall events that generated runoff > 1 mm have return periods of 25 years or greater and, when combined with the need for wet antecendent conditions, indicate that lateral flow generation on these hillslopes will occur infrequently. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Overland flow detectors (OFDs) were deployed in 2012 on a hillslope burned by the 2010 Fourmile Canyon fire near Boulder, Colorado, USA. These detectors were simple, electrical resistor‐type instruments that output a voltage (0–2·5 V) and were designed to measure and record the time of runoff initiation, a signal proportional to water depth, and the runoff hydrograph during natural convective rainstorms. Initiation of runoff was found to be spatially complex and began at different times in different locations on the hillslope. Runoff started first at upstream detectors 56% of the time, at the mid‐stream detectors 6%, and at the downstream detectors 38% of the time. Initiation of post‐wildfire runoff depended on the time‐to‐ponding, travel time between points, and the time to fill surface depression storage. These times ranged from 0·5–54, 0·4–1·1, and 0·2–14 minutes, respectively, indicating the importance of the ponding process in controlling the initiation of runoff at this site. Time‐to‐ponding was modeled as a function of the rainfall acceleration (i.e. the rate of change of rainfall intensity) and either the cumulative rainfall at the start of runoff or the soil–water deficit. Measurements made by the OFDs provided physical insight into the spatial and temporal initiation of post‐wildfire runoff during unsteady flow in response to time varying natural rainfall. They also provided data that can be telemetered and used to determine critical input parameters for hydrologic rainfall–runoff models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Situated at the foot of the Pichincha volcano, the city of Quito is frequently subjected to hydroclimatic hazards. In 1995 an 11·2 km2 watershed, located in the vicinity of the city, was equipped with eight rain gauges and two flow gauges to better understand the local rainfall/runoff transformation processes. Rainfall simulation experiments were carried out on more than 40 one‐square‐metre plots to measure infiltration point‐processes. The high density of measurement devices allowed us to identify the origin and nature of the various contributions to runoff for the different physiographic units of the watershed: urban area from an altitude of 2800 to 3200 m; farmland, pasture and forested land, and finally páramo above 3900 m. Runoff occurs mainly in the lower part of the basin and is caused by urbanization; however, the natural soils of this area can also produce Hortonian runoff, which is predominant in a few events. This contribution can be studied through rainfall simulation experiments. In the upper natural zone, the younger and more permeable soils generate less runoff on the slopes. However, almost permanently saturated contributing areas, which are located in the bottom of the quebradas, may generate flood events, the size of which depends on the extent of the area concerned. Variations in the runoff coefficients are related first to the baseflow and second to the amount of rainfall in the previous 24 h. This analysis, which underlines the complexity of a small, peri‐urban, volcanic catchment, is a necessary preliminary to runoff modelling in an area where very few experiments have been carried out on small catchments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

9.
The Soil Conservation Service curve number (CN) method is widely used for predicting direct runoff from rainfall. However, despite the extent of cultivation on hillslope areas, very few attempts have been made to incorporate a slope factor into the CN method. The objectives of this study were (1) to evaluate existing approaches integrating slope in the CN method, and (2) to develop an equation incorporating a slope factor into the CN method for application in the steep slope areas of the Loess Plateau of China. The dataset consisted of 11 years of rainfall and runoff measurements from two experimental sites with slopes ranging from 14 to 140%. The results indicated that the standard CN method underestimated large runoff events and overestimated small events. For our experimental conditions, the optimized and non‐optimized forms of the slope‐modified CN method of the Erosion Productivity Impact Calculator model improved runoff prediction for steep slopes, but large runoff events were still underestimated and small ones overpredicted. Based on relationships between slope and the observed and theoretical CN values, an equation was developed that better predicted runoff depths with an R2 of 0·822 and a linear regression slope of 0·807. This slope‐adjusted CN equation appears to be the most appropriate for runoff prediction in the steep areas of the Loess Plateau of China. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This study examines runoff and sediment generation rates within the road prism on unsealed road segments in the Cuttagee Creek catchment near Bermagui in New South Wales, Australia. A large (600 m2) rainfall simulator was used to measure runoff and sediment yields from each of the potential sediment and runoff sources and pathways. These included the road surface, table‐drain, upslope contributing area and cutslope face, and the entire road segment as measured at the drain outlet. Experiments were conducted on two major types of road (ridge‐top and cut‐and‐fill) of varying traffic usage and maintenance standard for two 30‐minute simulations of increasing rainfall intensity. From the range of possible sources within the road prism, the road surface produced the dominant source of excess runoff and sediment at each site with limited contributions from the table‐drain, cutslope face or contributing hillslope. Sediment generation varied significantly with road usage and traffic intensity. Road usage was strongly related to the amount of loose available sediment as measured prior to the experiments. Table‐drains acted primarily as sediment traps during the low rainfall event but changes in sediment concentration within the drains were observed as runoff volumes increased during the higher rainfall event of 110 mm h?1, releasing sediment previously stored in litter and organic dams. The experiments demonstrate the potential roles of various features of the road prism in the generation and movement of sediment and water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Two‐component hydrograph separation was performed on 19 low‐to‐moderate intensity rainfall events in a 4·1‐km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12–46 µS/cm) and pre‐event streamwater EC values (520–1297 µS/cm). While new water accounted for most of the increased discharge during storms (61–117%), the contribution of new water to total discharge during events was typically lower (18–78%) and negatively correlated with antecedent stream discharge (r2 = 0·55, p < 0·01). The amount of new water was positively correlated with total rainfall (r2 = 0·77), but hydrograph separation results suggest that less than half (9–46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non‐conservative tracers (EC and Si) and a conservative isotopic tracer (δD) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer‐based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non‐point‐source pollutant loading to urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Two Precambrian Shield zero‐order catchments were monitored from January 2003 to July 2004 to characterize their hydrological and biogeochemical characteristics prior to a forest management experiment. Hydrometric observations were used to examine temporal trends in hillslope‐wetland connectivity and the hillslope runoff processes that control wetland event response. The hillslope groundwater flux from the longer transect (E1) was continuous throughout the study period. Groundwater fluxes from a shorter and steeper hillslope (E0) were intermittent during the study period. Large depression storage elements (termed micro‐basins) located on the upper hillslope of the E1 catchment appeared to be at least partly responsible for the observed rapid wetland runoff responses. These micro‐basins were hydrologically connected to a downslope wetland by a subsurface channel of glacial cobbles that functioned as a macropore channel during episodic runoff events. The runoff response from the hilltop micro‐basins is controlled by antecedent water table position and water is quickly piped to the wetland fringe through the cobble channel during high water table conditions. During periods of low water table position, seepage along the bedrock–soil interface from the hilltop micro‐basin and other hillslopes maintained hillslope–wetland connectivity. The micro‐basins create a dynamic variable source‐area runoff system where the contributing area expands downslope during episodic runoff events. The micro‐basins occupied 30% of the E1 catchment and are a common feature on the Precambrian Shield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope‐scale field experiment. The soil moisture routing (SMR) model, a geographic information system‐based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3‐year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0·20 m error in PWD is equivalent to only a 1·6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid‐slope, and toe slope positions with errors as low as 0·09 m, 0·12 m, and 0·12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological survey. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The Soil Conservation Service curve number (CN) method commonly uses three discrete levels of soil antecedent moisture condition (AMC), defined by the 5‐day antecedent rainfall depth, to describe soil moisture prior to a runoff event. However, this way may not adequately represent soil water conditions of fields and watersheds in the Loess Plateau of China. The objectives of this study were: (1) to determine the effective soil moisture depth to which the CN is most related; (2) to evaluate a discrete and a linear relationship between AMC and soil moisture; and (3) to develop an equation between CN and soil moisture to predict runoff better for the climatic and soil conditions of the Loess Plateau of China. The dataset consisted of 10 years of rainfall, runoff and soil moisture measurements from four experimental plots cropped with millet, pasture and potatoes. Results indicate that the standard CN method underestimated runoff depths for 85 of the 98 observed plot‐runoff events, with a model efficiency E of only 0·243. For our experimental conditions, the discrete and linear approaches improved runoff estimation, but still underestimated most runoff events, with E values of 0·428 and 0·445 respectively. Based on the measured CN values and soil moisture values in the top 15 cm of the soil, a non‐linear equation was developed that predicted runoff better with an E value of 0·779. This modified CN equation was the most appropriate for runoff prediction in the study area, but may need adjustments for local conditions in the Loess Plateau of China. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Assessing hydrologically driven erosion at regional scales from a process‐based perspective presents a significant challenge. Most regional‐scale erosion assessments are based upon a simple steady‐state hydrology foundation. For this study, the sediment transport version of the physics‐based Integrated Hydrology Model (InHM), excited by synthetically generated rainfall, was employed to assess long‐term hydrologically driven erosion for a regional‐scale island boundary‐value problem. The spatiotemporal dynamics of runoff generation, erosion, and deposition are illustrated through saturation, water depth, velocity, and sediment concentration results. The simulations demonstrate that process‐based assessment for concept development is both feasible and tractable at regional spatial and human time scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low‐gradient, third‐order forested watershed. It was hypothesized that runoff–rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r2 = 0·68; p < 0·01) and dry (r2 = 0·19; p = 0·02) periods. Rainfall‐runoff relationships based on a 5‐day antecedent precipitation index (API) showed significant (r2 = 0·39; p < 0·01) correspondence for wet but not (r2 = 0·02; p = 0·56) for dry conditions. The same was true for rainfall‐runoff relationships based on 30‐day API (r2 = 0·39; p < 0·01 for wet and r2 = 0·00; p = 0·79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P = 0·33), and the wet antecedent soil moisture condition based on 5‐day (R/P = 0·25) and 30‐day (R/P = 0·26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A deeper knowledge of the hydrological response of semi-arid Mediterranean watersheds would be useful in the prediction of runoff production for assessing flood risks and planning flood mitigation works. This study was conducted to identify the runoff generation mechanisms and their controlling factors at the hillslope scale in a Mediterranean semi-arid watershed. Four zero-order microcatchments were selected to measure rainfall and runoff for a three-year period. Two groups of soil were differentiated with respect to the hydrological response. The fine textured, poorly permeable soils of low organic carbon content had a greater runoff coefficient (9%) and lower runoff threshold (3·6 mm) than more permeable, coarser textured soils of medium organic carbon content (<3%, and 8 mm, respectively). The influence of rainfall characteristics on the hydrological response was different. Rain intensity was the major rainfall parameter controlling the runoff response in the microcatchments on fine textured, low infiltrability soils with a poor plant cover, while total rainfall was more closely correlated with runoff in coarser textured, highly permeable soils with a denser plant cover. It can be concluded that there are two runoff generation mechanisms: (i) an infiltration-excess overland flow in the more degraded areas with low organic carbon content (<0·5%) and low infiltrability (>5 mm h−1); and (ii) a saturation-excess overland flow in the less degraded areas with a high organic carbon content (>2%), high infiltrability (>8 mm h−1) and covered by a dense plant cover (>50%). © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The identification of runoff contributing areas would provide the ideal focal points for water quality monitoring and Best Management Practice (BMP) implementation. The objective of this study was to use a field‐scale approach to delineate critical runoff source areas and to determine the runoff mechanisms in a pasture hillslope of the Ozark Highlands in the USA. Three adjacent hillslope plots located at the Savoy Experimental Watershed, north‐west Arkansas, were bermed to isolate runoff. Each plot was equipped with paired subsurface saturation and surface runoff sensors, shallow groundwater wells, H‐flumes and rain gauges to quantify runoff mechanisms and rainfall characteristics at continuous 5‐minute intervals. The spatial extent of runoff source areas was determined by incorporating sensor data into a geographic information‐based system and performing geostatistical computations (inverse distance weighting method). Results indicate that both infiltration excess runoff and saturation excess runoff mechanisms occur to varying extents (0–58% for infiltration excess and 0–26% for saturation excess) across the plots. Rainfall events that occurred 1–5 January 2005 are used to illustrate the spatial and temporal dynamics of the critical runoff source areas. The methodology presented can serve as a framework upon which critical runoff source areas can be identified and managed for water quality protection in other watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Changes in climate and urban growth are the most influential factors affecting hydrological characteristics in urban and extra‐urban contexts. The assessment of the impacts of these changes on the extreme rainfall–runoff events may have important implications on urban and extra‐urban management policies against severe events, such as floods, and on the design of hydraulic infrastructures. Understanding the effects of the interaction between climate change and urban growth on the generation of runoff extremes is the main aim of this paper. We carried out a synthetic experiment on a river catchment of 64 km2 to generate hourly runoff time series under different hypothetical scenarios. We imposed a growth of the percentage of urban coverage within the basin (from 1.5% to 25%), a rise in mean temperature of 2.6 °C, and an alternatively increase/decrease in mean annual precipitation of 25%; changes in mean annual precipitation were imposed following different schemes, either changing rainstorm frequency or rainstorm intensity. The modelling framework consists of a physically based distributed hydrological model, which simulates fast and slow mechanisms of runoff generation directly connected with the impervious areas, a land‐use change model, and a weather generator. The results indicate that the peaks over threshold and the hourly annual peaks, used as hydrological indicators, are very sensitive to the rainstorm intensity. Moreover, the effects of climate changes dominate on those of urban growth determining an exacerbation of the fast runoff component in extreme events and a reduction of the slow and deep runoff component, thus limiting changes in the overall runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号