首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文利用NCEP/NCAR再分析资料和中国2374站日降水资料,通过水汽收支方程分解方法分析了华南夏季降水在1993~2002年时段年代际增多以及2003~2013年时段年代际减少的水汽输送特征及其成因。结果表明:1993~2002年时段(2003~2013年时段),局地环流导致异常下沉(上升)气流,南亚高压偏东(偏西)和西太平洋副热带高压(简称副高)偏西(偏东),菲律宾及副高西南侧水汽输送加强(减弱),华南地区低层出现强的水汽辐合(辐散),导致降水偏多(偏少)。华南地区夏季降水两次年代际变化主要与风速变化引起的水汽输送动力散度项的异常有关,同时还受到与比湿变化引起的水汽输送热力散度项异常、及天气尺度的涡旋引起的水汽输送涡流散度项异常影响。此外,研究发现水汽输送的异常与环流和海温异常均密切相关。  相似文献   

2.
Previous studies suggest that the Pacific Decadal Oscillation (PDO) modulates annual and summer precipitation patterns over East China. In this study, the effect of the PDO on monthly precipitation anomalies over this region is investigated. The new results show that the effect is month-dependent. The well-known North–South dipole patterns of annual precipitation are dominated by the July–August precipitation. In other months, the corresponding patterns vary in strength, position, and even shape. For example, the May and June precipitation patterns show opposite signs to the July–August or annual mean patterns, whereas the September–December monthly precipitation anomalies show a triple pattern. Monthly precipitation patterns over East China are largely determined by large-scale moisture transport controlled by atmospheric circulation. The PDO affects East China precipitation patterns by modulating the large-scale circulation pattern.  相似文献   

3.
This paper examines moisture transport on intraseasonal timescales over the continent and over the South Atlantic convergence zone (SACZ) during the South America (SA) summer monsoon. Combined Empirical Orthogonal Function analysis (EOFc) of Global Precipitation Climatology Project pentad precipitation, specific humidity, air temperature, zonal and meridional winds at 850?hPa (NCEP/NCAR reanalysis) are performed to identify the large-scale variability of the South America monsoon system and the SACZ. The first EOFc was used as a large-scale index for the South American monsoon (LISAM), whereas the second EOFc characterized the SACZ. LISAM (SACZ) index showed spectral variance on 30?C90 (15?C20) days and were both band filtered (10?C100?days). Intraseasonal wet anomalies were defined when LISAM and SACZ anomalies were above the 75th percentile of their respective distribution. LISAM and SACZ wet events were examined independently of each other and when they occur simultaneously. LISAM wet events were observed with the amplification of wave activity in the Northern Hemisphere and the enhancement of northwesterly cross-equatorial moisture transport over tropical continental SA. Enhanced SACZ was observed with moisture transport from the extratropics of the Southern Hemisphere. Simultaneous LISAM and SACZ wet events are associated with cross-equatorial moisture transport along with moisture transport from Subtropical Southwestern Atlantic.  相似文献   

4.
中国东部季风区夏季四类雨型的水汽输送特征及差异   总被引:2,自引:1,他引:1  
利用1951~2015年NCEP/NCAR再分析逐日资料和中国160站月降水观测资料,及中国东部季风区夏季四类雨型(北方型、中间型、长江型和华南型)的划分结果,分析了东亚水汽输送与中国东部季风区夏季降水的关系,比较了四类雨型的水汽输送、收支特征及其差异,结果表明:(1)夏季影响中国东部季风区的水汽通道主要有以下6条:印度洋通道,表征印度季风区偏南的西风水汽输送;高原南侧通道,表征印度季风区偏北的西风水汽输送;太平洋通道,表征由西太平洋副热带高压(副高)带来的西太平洋的水汽;西风带通道,表征西风带的水汽输送;孟加拉湾通道,表征来自孟加拉湾向北的水汽输送;南海通道,表征来自印度洋和孟加拉湾在中南半岛转向及来自南海的水汽;与中国东部不同地区降水异常相联系的水汽通道存在明显的差异,且同一条水汽通道在夏季不同阶段与降水的关系也不尽相同。(2)四类雨型的水汽输送和收支特征有明显的差异,华北盛夏降水主要受亚洲季风水汽输送的影响,其次是西风带水汽输送,北方型年二者往往偏强,尤其是季风水汽输送增加一倍以上,贡献也明显增加,20世纪70年代中期之后,季风水汽输送显著减弱,西风带水汽输送的重要性相对增大;淮河流域夏季降水异常主要受太平洋通道水汽输送异常的主导,其次是高原南侧通道水汽输送,二者偏强并在淮河流域辐合时,淮河流域降水偏多形成中间型年;长江中下游地区夏季降水主要受太平洋通道水汽输送异常的主导,长江型年,副高西北侧的西南水汽输送异常加强,并与北方冷空气异常在长江中下游地区辐合,区域为正的水汽净收支;华南地区夏季降水则受印度洋通道、太平洋通道及南海通道的共同影响,当三条通道异常偏强,水汽与北方冷空气在华南地区辐合,形成华南型年。本研究所得结论加深了我们对四类雨型形成机理的认识,并为汛期主雨带的预测提供了参考。  相似文献   

5.
A. M. Grimm 《Climate Dynamics》2004,22(2-3):123-138
The rainy season in most of Brazil is associated with the summer monsoon regime in South America. The quality of this season is important because it rains little during the rest of the year over most of the country. In this study, the influence of La Niña events on the summer monsoon circulation, rainfall and temperature is analyzed with seasonal and monthly resolution, using data from a dense network of stations, giving a comprehensive view of the impact of these events. The expected precipitation percentiles during the monsoon season of La Niña events are calculated, as well as anomalies of surface temperature and thermodynamic parameters. This information is analyzed jointly with anomaly composites of several circulation parameters. The analysis shows that some anomalies, which are consistent and important during part of the season, are smoothed out in a seasonal analysis. There are abrupt changes of anomalies within the summer monsoon season, suggesting the prevalence of regional processes over remote influences during part of the season. In spring there are positive precipitation anomalies in north and central-east Brazil and negative ones in south Brazil. These precipitation anomalies are favored by the perturbation in the Walker and Hadley circulation over the eastern Pacific and South America, and by perturbations in the rotational circulation over southern South America. Northerly moisture inflow from the Atlantic into northern South America is emphasized and diverted towards the mouth of the Amazon by the low-level cyclonic anomaly north of the equator. In December and January, probably triggered by anomalous surface cooling during the spring, there is an anomalous low-level divergence and an anticyclonic anomaly over southeast Brazil. This anomalous circulation directs moisture flux towards south Brazil, causing moisture convergence in part of this region and part of central-west Brazil. The thermodynamic structure in central-east Brazil does not favor precipitation over this region, and the wet anomalies in north Brazil are displaced northward. The dry anomalies in south Brazil almost disappear and even turn positive. In February, after the strongly below normal precipitation of January, the surface temperature anomalies turn positive over southeast Brazil. The low-level anticyclonic anomaly is much weaker than in January. There are positive rainfall anomalies in north Brazil and in the South Atlantic Convergence Zone, and negative ones return to south Brazil.  相似文献   

6.
In austral summer, the observed El Ni?o (EN) events during warm Pacific Decadal Oscillation (PDO) phases (PDO(+)) exhibited large anomalous upper level wave patterns in response to larger Sea Surface Temperature (SST) anomalies in the Equatorial Pacific and Atlantic Oceans compared with SST anomalies in EN events during cold PDO phases (PDO(?)). The precipitation anomalies in PDO(+) EN are increased over Southeastern South America (SESA) associated with the intensification of the moisture flux convergence in this region. The PDO(?) EN events exhibit positive precipitation anomalies only over southern SESA, while negative anomalies were observed in the north. Downward motion and anomalous divergence over central eastern Brazil may have contributed to the weakening of the northwesterly moisture flux convergence associated with the South American Low Level Jet (SALLJ) over the subtropics. The extratropical cyclones showed higher frequency and lower central pressures in southern Brazil, Uruguay, northeastern Argentina, and Southwest Atlantic Ocean during the PDO(+) EN events compared with the PDO(?) EN events. Such increase in the frequency and intensity of cyclogenesis cases seems to be in accordance with the anomalous moisture flux convergence over the SESA and associated reduction in the Sea Level Pressure observed during PDO(+) EN events. In order to investigate the impact of a canonical El Ni?o event over South America under different PDO phases, two numerical experiments were done with an Atmospheric General Circulation Model. Global SST and ice sea fields average over years characterized by (a) PDO(+) and (b) PDO(?) were considered as climatologically fields, and a composite of anomalies of SST of all El Ni?o events observed in 1950?C1999 was added in the region 20oS?C20oN;120oW?C175oW of both ??climatologies.?? The differences in experiments suggest that a canonical EN may produce significant different anomalous atmospheric patterns associated with distinct PDO climatologies. The more significant differences are simulated over extreme northern and eastern Brazil. Additional numerical experiments isolating the observed variability of SST over several oceanic basins during different PDO phases will be conducted to study their particular role on the South American climate.  相似文献   

7.
This analysis compares the climate impacts over North America during winter associated with various El Niño–Southern Oscillation (ENSO) indices, including the Niño 3.4 index, the leading tropical Pacific outgoing longwave radiation and sea surface temperature (OLR-SST) covariability, and the eastern Pacific (EP) and central Pacific (CP) types of ENSO identified from both partial-regression–empirical orthogonal function (EOF) and regression–EOF approaches. The traditional Niño 3.4 SST index is found to be optimal for monitoring the tropical Pacific OLR-SST covariability and for the tropical SST impact on North America. The circulation anomalies associated with the Niño 3.4 index project on both the Pacific/North American (PNA) and Tropical/Northern Hemisphere (TNH) patterns. The ENSO associated with the PNA tends to come from both the EP and CP ENSOs, whereas that associated with the TNH comes more from the EP ENSO. The variability of ENSO significantly affects North American temperature and precipitation, as well as temperature and precipitation extremes. For either the EP or CP types of ENSO, qualitatively similar patterns of climate and climate extreme anomalies are apparent associated with the indices identified by the two EOF approaches, with differences mainly in the anomalous amplitude. The anomalous patterns are generally field significant over North America for the EP ENSO but not field significant for the CP ENSO.

The circulation anomalies associated with ENSO are reinforced and maintained by synoptic vorticity fluxes in the upper troposphere. The anomalous surface temperature is mainly determined by the anomalies in surface radiative heating in the face of upward surface longwave radiative damping. The precipitation anomalies are supported by the vertically integrated moisture transport. The differences in atmospheric circulation, surface temperature, and precipitation among the various ENSO indices, including the intensity and spatial structure of the fields, can be attributed to the corresponding differences in synoptic eddy vorticity forcing, surface radiative heating, and vertically integrated moisture transport.  相似文献   


8.
We assess the ability of Global Climate Models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) to simulate observed annual precipitation cycles over the Caribbean. Compared to weather station records and gridded observations, we find that both CMIP3 and CMIP5 models can be grouped into three categories: (1) models that correctly simulate a bimodal distribution with two rainfall maxima in May–June and September–October, punctuated by a mid-summer drought (MSD) in July–August; (2) models that reproduce the MSD and the second precipitation maxima only; and (3) models that simulate only one precipitation maxima, beginning in early summer. These categories appear related to model simulation of the North Atlantic Subtropical High (NASH) and sea surface temperature (SST) in the Caribbean Sea and Gulf of Mexico. Specifically, models in category 2 tend to anticipate the westward expansion of the NASH into the Caribbean in early summer. Early onset of NASH results in strong moisture divergence and MSD-like conditions at the time of the May–June observed precipitation maxima. Models in category 3 tend to have cooler SST across the region, particularly over the central Caribbean and the Gulf of Mexico, as well as a weaker Caribbean low-level jet accompanying a weaker NASH. In these models, observed June-like patterns of moisture convergence in the central Caribbean and the Central America and divergence in the east Caribbean and the Gulf of Mexico persist through September. This analysis suggests systematic biases in model structure may be responsible for biases in observed precipitation variability over the Caribbean and more confidence may be placed in the precipitation simulated by the GCMs that are able to correctly simulate seasonal cycles of SST and NASH.  相似文献   

9.
蒙伟光  郑彬 《气象学报》2006,64(1):81-89
在对南海夏季风的爆发及中南半岛陆面过程的可能影响进行了诊断分析的基础上,应用MM5/NOAHLSM模式,研究了中南半岛陆气相互作用对2004年南海夏季风爆发过程的可能影响。结果发现:在南海夏季风爆发前,中南半岛南海地区低层气温差确实出现低值,甚至负值;尽管短期内中南半岛土壤湿度和降水的变化没有引起季风爆发日期的改变,但对季风爆发的强度有影响。土壤湿度和降水变化引起的干异常可导致地表感热通量的增大和地表温度的升高,致使中南半岛与南海之间低层的温差异常(负温差)减小,季风爆发强度减弱;不同的是,湿异常可引起季风爆发强度增强。这一结果说明,在南海夏季风爆发前期,中南半岛上空对流活动和降水异常及其引起的土壤湿度的异常变化在一定程度上会影响到季风爆发的过程。文章还比较了不同温湿地表条件下低层大气状态的差异和地表能量、水分平衡过程的不同,分析了陆气相互作用对季风活动产生影响的物理机制。  相似文献   

10.
We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.  相似文献   

11.
In this study, an interdecadal shift of summer precipitation over northern East Asia (NEA) was identified, demonstrating that summer precipitation decreased abruptly after 1998/99. The synchronous shift in summer moisture budget and water vapor transport over NEA was further investigated by using the NCEP/NCAR reanalysis data. The results indicate that water vapor transported northward into NEA from three low-latitude paths was limited because most water vapor was transported eastward. Water vapor transported from the westerly path in mid–high (WMH) latitudes exhibited significant correlations with summer precipitation in NEA and experienced a significant adjustment in the late 1990s. Regarding the spatial distributions of water vapor transport, less input was found through the western boundary while more output occurred through the eastern boundary of NEA, and zonal water vapor transport fluxes mainly concentrated at the low to middle levels, which led to the summer precipitation shift in NEA around the late 1990s. Furthermore, it is also confirmed that the wind anomalies (rather than the moisture disturbance) as the dominant internal dynamic factor and Pacific Decadal Oscillation/Atlantic Multidecadal Oscillation (PDO/AMO) as possible external force played important roles in influencing the water vapor transport and causing the summer precipitation shift over NEA in the late 1990s.  相似文献   

12.
Present and future climatologies in the phase I CREMA experiment   总被引:1,自引:0,他引:1  
We provide an overall assessment of the surface air temperature and precipitation present day (1976–2005) and future (2070–2099) ensemble climatologies in the Phase I CREMA experiment. This consists of simulations performed with different configurations (physics schemes) of the ICTP regional model RegCM4 over five CORDEX domains (Africa, Mediterranean, Central America, South America, South Asia), driven by different combinations of three global climate models (GCMs) and two greenhouse gas (GHG) representative concentration pathways (RCP8.5 and RCP4.5). The biases (1976–2005) in the driving and nested model ensembles compared to observations show a high degree of spatial variability and, when comparing GCMs and RegCM4, similar magnitudes and more similarity for precipitation than for temperature. The large scale patterns of change (2070–2099 minus 1976–2005) are broadly consistent across the GCM and RegCM4 ensembles and with previous analyses of GCM projections, indicating that the GCMs selected in the CREMA experiment are representative of the more general behavior of current GCMs. The RegCM4, however, shows a lower climate sensitivity (reduced warming) than the driving GCMs, especially when using the CLM land surface scheme. While the broad patterns of precipitation change are consistent across the GCM and RegCM4 ensembles, greater differences are found at sub-regional scales over the various domains, evidently tied to the representation of local processes. This paper serves to provide a reference view of the behavior of the CREMA ensemble, while more detailed and process-based analysis of individual domains is left to companion papers of this special issue.  相似文献   

13.
The climatological characteristics of the moisture budget over the joining area of Asia and the Indian-Pacific Ocean (AIPO) and its adjacent regions as well as their anomalies have been estimated in this study. The main results are as follows. In the winter, the northeasterly moisture transport covers the extensive areas at the lower latitudes of the AIPO. The westerly and northerly moisture transport is the major source and the South Indian Ocean (SIO) is the moisture sink. In the summer, influenced by the southwesterly monsoonal wind, the cross-equatorial southwesterly moisture transport across Somali originating from the SIO is transported through the Arabian Sea (AS), the Bay of Bengal (BOB), and the South China Sea (SCS) to eastern China. The AIPO is controlled by the southwesterly moisture transport. The net moisture influx over the AIPO has obvious interannual and interdecadal variations. From the mid- or late 1970s, the influxes over the SIO, the AS, the northern part of the western North Pacific (NWNP), and North China (NC) as well as South China (SC) begin to decrease abruptly, while those over Northeast China (NEC) and the Yangtze River-Huaihe River basins (YHRB) have increased remarkably. As a whole, the net moisture influxes over the BOB and the southern part of the western North Pacific (SWNP) in the recent 50 years take on a linear increasing trend. However, the transition timing for these two regions is different with the former being at the mid- or late 1980s and the latter occurring earlier, approximately at the early stage of the 1970s. The anomalous moisture source associated with the precipitation anomalies is different from the normal conditions of the summer precipitation. For the drought or flood years or the years of El Ni\~no and its following years, the anomalous moisture transport originating from the western North Pacific (WNP) is the vital source of the anomalous precipitation over eastern China, which is greatly related with the variation of the subtropical Pacific high.  相似文献   

14.
Historical studies have shown that summer rainfall in eastern China undergoes decadal variations, with three apparent changes in the late 1970s, 1992, and the late 1990s. The present observational study indicates that summer precipitation over eastern China likely underwent a change in the late 2000s, during which the main spatial pattern changed from negative–positive–negative to positive–negative in the meridional direction. This change in summer precipitation over eastern China may have been associated with circulation anomalies in the middle/upper troposphere. A strong trough over Lake Baikal created a southward flow of cold air during 2009–15, compared with 1999–2008, while the westward recession of the western Pacific subtropical high strengthened the moisture transport to the north, creating conditions that were conducive for more rainfall in the north during this period. The phase shift of the Pacific Decadal Oscillation in the late 2000s led to the Pacific–Japan-type teleconnection wave train shifting from negative to positive phases, resulting in varied summer precipitation over eastern China.  相似文献   

15.
青藏高原热力强迫对中国东部降水和水汽输送的调制作用   总被引:12,自引:1,他引:11  
从4个方面综述了有关青藏高原大地形热力“驱动”对中国东部雨带和水汽输送特征及其年代际变化的影响作用的研究进展:(1)中国三阶梯大地形热力过程变化与季风雨带季节演进;(2) 青藏高原地-气过程热力“驱动”及其季风水汽输送结构;(3) 青藏高原积雪冷源对中国东部水汽输送结构及其雨带分布的影响;(4) 青藏高原视热源变化与雨带年代际变化相关特征及其可能调制。其主要研究结论是:(1)中国西部高原特殊三阶梯大地形结构强化了海-陆热力差异,尤其是高原大地形使地-气热力差异季节变化有由青藏高原向东北方向大地形区域延伸变化趋势,且其与季风雨带由东南沿海移向西北朝青藏高原与黄土高原边缘同步演进,两者似乎存在类似季节内演进的一种“动态的吸引”。(2)中国东部雨带时空变化特征和季风强弱变化趋势均与青藏高原热源强弱异常变化相对应。青藏高原热源异常影响低纬度海洋向陆地的水汽传输路径和强度,进而调制中国东部降水时空演变。在青藏高原热源强和弱年,中国降水变率空间分布特征分别为“北涝南旱”和“南涝北旱”。青藏高原视热源强(弱)异常变化“强信号”将对东亚与南亚区域的季风水汽输送结构,以及夏季风降水时空分布的变异具有“前兆性”的指示意义。(3)长江中下游地区作为独特南北两支水汽流的汇合带,该地区夏季青藏高原热源与水汽通量相关矢特征呈类似于青藏高原多雪与少雪年水汽通量偏差场中水汽汇合区显著特征差异,揭示了冬季青藏高原积雪冷源影响中国东部夏季长江流域梅雨水汽输送结构特征。(4)中国降水的年代际变化基本型态为中国东部呈“南涝北旱趋势”,西北区域呈现出“西部转湿趋势”。但基于近10年青藏高原春季视热源出现“降后回升”趋势,中国东部“南涝北旱”的降水格局已出现转折趋势。  相似文献   

16.
春季华南土壤湿度异常与中国夏季降水的可能联系   总被引:12,自引:0,他引:12  
基于ERA40(ECMWF)1958—2001年土壤湿度再分析资料和中国541站降水资料,通过观测分析揭示了华南春季土壤湿度异常与中国夏季降水的联系及其可能的物理过程。结果表明,春季华南土壤湿度与夏季华南(长江流域及其以北地区)降水呈正(负)相关;春季华南土壤湿度负(正)异常,夏季华南降水异常偏少(多),而长江以北地区降水则偏多(少)。通过对春季华南土壤湿度异常年份对应的环流异常特征的诊断分析发现:土壤湿度负异常年,西太平洋副高位置明显偏西,华南地区对应异常的下沉运动和水汽辐散,导致该地区降水偏少;而长江中下游地区对应异常的上升运动和水汽通量的辐合,降水偏多;土壤湿度正异常年的情况大致相反。进一步的分析表明,春季华南土壤湿度与同期长江中下游及以北地区土壤湿度存在明显的负相关关系。春季华南土壤湿度负(正)异常年的同期华北到长江中下游区域土壤湿度为正(负)异常,将导致南部区域的地表温度异常升高(降低),北部地表温度异常偏低(偏高),并通过改变地表对大气的加热,引起夏季大气环流的异常,最终造成夏季降水异常。  相似文献   

17.
1997年东亚夏季风异常活动在汛期降水中的作用   总被引:15,自引:5,他引:15       下载免费PDF全文
利用1997年逐日降水资料和国家气象中心提供的T63再分析资料,详细讨论了中国汛期降水及东亚夏季风活动的异常特征及其间的联系。结果表明,该年中国夏季降水及东亚夏季风活动均表现了突出的异常,东部雨带长期滞留在江南、华南一带,夏季风向北的推进很弱,主要活跃于较低纬度,最北仅至35°N,未能在黄河以北的地区建立,比起气候意义下夏季风北进的最高纬度偏南10°左右。在这一过程中,夏季风异常是主要雨带异常发展的重要影响因子,候大雨带的建立和北推均与季风的建立与活跃密切相关。进一步对大尺度水汽场的分析表明,夏季风的活动明显改变了大尺度水汽输送及辐合,进而影响和制约了主要雨带的分布。夏季风爆发后,南海及中国大陆的主要水汽输送源均发生了明显变化,来自于孟加拉湾和热带印度洋的水汽输送到南海后,再从南海输送到中国大陆。而季风的活动同时也制约了强水汽辐合带的出现,其在低纬的维持为雨带长期稳定于南方地区提供了有利条件。  相似文献   

18.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

19.
Most major features of the interdecadal shift in boreal winter-spring precipitation over the American continents associated with the 1976–1977 transition are reproduced in atmospheric general circulation model (GCM) simulations forced with observed sea surface temperature (SST). The GCM runs forced with global and tropical Pacific SSTs produce similar multidecadal changes in precipitation, indicating the dominant influence of tropical Pacific SST. Companion experiments indicate that the shift in mean conditions in the tropical Pacific is responsible for these changes. The observed and simulated “post- minus pre-1976” difference in Jan–May precipitation is wet over Mexico and the southwest U.S., dry over the Amazon, wet over sub-Amazonian South America, and dry over the southern tip of South America. This pattern is not dramatically different from a typical El Niño-induced response in precipitation. Although the interdecadal (post- minus pre-1976) and interannual (El Niño?La Niña) SST anomalies differ in detail, they produce a common tropics-wide tropospheric warmth that may explain the similarity in the precipitation anomaly patterns for these two time scales. An analysis of local moisture budget shows that, except for Mexico and the southwest U.S. where the interdecadal shift in precipitation is balanced by evaporation, elsewhere over the Americas it is balanced by a shift in low-level moisture convergence. Moreover, the moisture convergence is due mainly to the change in low-level wind divergence that is linked to low-level ascent and descent.  相似文献   

20.
The South Asian High (SAH) and precipitation over East Asia simulated by 11 coupled GCMs associated with the forthcoming Intergovernmental Panel on Climate Change’s (IPCC) 4th Assessment Report are evaluated. The seasonal behavior of the SAH is presented for each model. Analyses of the results show that all models are able to reproduce the seasonal cycle of the SAH. Locations of the SAH center are also basically reproduced by these models. All models underestimate the intensity and the extension of coverage in summer. The anomalous SAH can be divided into east and west modes according to its longitudinal position in summer on the interannual timescale, and the composite anomalies of the observed precipitation for these two modes tend to have opposite signs over East Asia. However, only several coupled GCMs can simulate the relationship between rainfall and SAH similar to the observed one, which may be associated with the bias in simulation of the subtropical anticyclone over the West Pacific (SAWP) at 500 hPa. In fact, it is found that any coupled GCM, that can reproduce the reasonable summer mean state of SAWP and the southward (northward) withdrawal (extension) for the east (west) mode of SAH as compared to the observed, will also simulate similar rainfall anomaly patterns for the east and west SAH modes over East Asia. Further analysis indicates that the observed variations in the SAH, SAWP and rainfall are closely related to the sea surface temperature (SST) over the equatorial tropical Pacific. Particularly, some models cannot simulate the SAWP extending northward in the west mode and withdrawing southward in the east mode, which may be related to weak major El Ni?no or La Ni?na events. The abilities of the coupled GCMs to simulate the SAWP and ENSO events are associated partly with their ability to reproduce the observed relationship between SAH and the rainfall anomaly over East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号