首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ten wheat production sites of Pakistan were categorized into four climatic zones i.e. arid, semi-arid, sub-humid and humid to explore the vulnerability of wheat production in these zones to climate change using CSM-Cropsim-CERES-Wheat model. The analysis was based on multi-year (1971–2000) crop model simulation runs using daily weather series under scenarios of increased temperature and atmospheric carbon dioxide concentration (CO2) along with two scenarios of water management. Apart from this, sowing date as an adaptation option to offset the likely impacts of climate change was also considered. Increase in temperature resulted in yield declines in arid, semi-arid and sub-humid zone. But the humid zone followed a positive trend of gain in yield with rise in temperature up to 4°C. Within a water regime, increase in CO2 concentration from 375 to 550 and 700 ppm will exert positive effect on gain in wheat yield but this positive effect is significantly variable in different climatic zones under rainfed conditions than the full irrigation. The highest response was shown by arid zone followed by semi-arid, sub-humid and humid zones. But if the current baseline water regimes (i.e. full irrigation in arid and semi-arid zones and rainfed in sub-humid and humid zones) persist in future, the sub-humid zone will be most benefited in terms of significantly higher percent gain in yield by increasing CO2 level, mainly because of its rainfed water regime. Within a CO2 level the changes in water supply from rainfed to full irrigation shows an intense degree of responsiveness in terms of yield gain at 375 ppm CO2 level compared to 550 and 700 ppm. Arid and semi-arid zones were more responsive compared to sub-humid and humid zones. Rise in temperature reduced the length of crop life cycle in all areas, though at an accelerated rate in the humid zone. These results revealed that the climatic zones have shown a variable intensity of vulnerability to different scenarios of climate change and water management due to their inherent specific and spatial climatic features. In order to cope with the negative effects of climate change, alteration in sowing date towards cooler months will be an appropriate response by the farmers.  相似文献   

2.
Based on the dynamic and thermodynamic equations in the SBL,the protection characteristics and mech-anism of shelterbelts are numerically studied in this paper.The results are in consistent with those ob-served in fields and wind-tunnels.Research shows that the belts with a permeability of 0.3—0.4 have themaximum sheltering effects.The distance where wind speed reduces at least by 20% is at 18—19 times oftree height(H)behind belts.The protection distance reduces fast with the increase of the permeability andslowly with its decrease.The belts have weaker sheltering effects in upstream,generally beyond 6H infront of belts there are no sheltering effects.In addition,the belts with low permeability at top and highpermeability at bottom have much better sheltering effects than the belts with high permeability at top andlow permeability at bottom.The belts with 50% overall permeability reduce wind speed at least,by 20%at the distance of 5H on the leeward side and by 10% at 11H.When the air is unstable,the protectingeffects will be reduced.For the uniform belts with a permeability of 0.35,the distance where wind speedreduces at least by 20% is 15H under the unstable air and 13H under very unstable air.The belts reducethe turbulent diffusion coefficient at the bottom of belts,but increase it at the top.  相似文献   

3.
利用时域反射仪测定的土壤水分估算农田蒸散量   总被引:19,自引:0,他引:19       下载免费PDF全文
简要介绍了时域反射仪(TDR)测定土壤含水量的原理和方法,根据TDR实测的土壤水分和农田水量平衡原理,估算了冬小麦生育期内不同供水条件下的农田蒸散量,探讨了TDR探针不同埋设方式对测定土体贮水量以及对估算的农田蒸散量的影响,根据充分供水区测定的最大可能蒸散量、非充分供水区的实际蒸散量,以及用气象资料计算的参考作物蒸散量,分别计算了冬小麦生育期内的作物系物Kc和土壤水分胁迫系数Ks。  相似文献   

4.
在不同的环境风场作用下台风移动路径出现差异,导致海洋冷尾流呈现不同的响应特征,从而对台风强度产生影响。利用海气耦合模式进行理想试验,模拟研究了在均匀的东、西风场条件下冷尾流的响应特征,以分析台风强度出现差异的原因。研究结果表明,在均匀的东风环境场与β效应的共同作用下,台风路径呈西北方向移动,冷尾流沿台风路径呈非对称分布,右侧降温幅度大于左侧,并持续影响台风内核海气界面热通量的输送。而均匀的西风环境场抵御了部分β效应,使得台风东移北抬,当强度增强到一定程度后向西北方向移动,最大幅度的冷尾流出现在台风南侧,眼区热通量的输送受冷尾流影响较小。另外,在台风快速加强阶段,眼区范围内的潜热通量输送对台风加强更为关键。   相似文献   

5.
三北防护林体系建设前后华北春季生态环境对比   总被引:4,自引:0,他引:4  
钟中  王汉杰 《气象》2001,27(9):13-17
利用三北防护林体系建设前后华北地区长期定点观测资料,对该地区春季生态环境的变化进行了对比分析。分析表明,防护林体系建设以后,除日照有所减少、温度日较差减不春季农作物生长有一些不利影响外,其它生态环境因子都是向着有利于作物生长和改善生存环境方向变化的。  相似文献   

6.
基于概念模型的麦田土壤水分动态模拟研究   总被引:2,自引:1,他引:1  
王仰仁  李松敏  王文龙  孙新忠  韩娜娜 《气象》2010,36(12):102-108
农田土壤水分模拟是农业用水管理的重要依据。以根区土体水量平衡方程为依据,考虑根区下界面水分通量,构建了农田土壤水分变化模拟模型,该模型由作物蒸散量模型、根区下界面水分通量模型以及水量平衡方程等组成。采用山西水利职业技术学院试验基地2007年和2008年2个年度冬小麦试验资料,确定了模型参数。结果表明,土壤储水量模拟计算值与实测值有较好的一致性,其相关系数达到0.9555;F检验结果达到极显著水平,所建立的麦田土壤水分动态模型可用于作物蒸散量、根区下界面水分通量和田间土壤水分的模拟计算;计算精度平均达到3%~11%。表明该模型可较好地描述农田士壤水分转化过程。  相似文献   

7.
相对湿润度指数在农业干旱监测业务中的应用   总被引:7,自引:0,他引:7       下载免费PDF全文
该文介绍相对湿润度指数在逐日滚动的农业干旱监测业务中应用的处理方法。文中采用联合国粮农组织推荐的方法进行潜在蒸散的计算和作物系数订正,提出了作物根区可吸收土壤总有效含水量的概念,并替代作物根区土壤总有效含水量进行水分胁迫条件下的作物系数订正,观察济南站2008年1—5月冬小麦实际蒸散量的计算结果,发现在蒸发强烈的春季,水分胁迫效果明显;提出了复合相对湿润度指数、区域综合相对湿润度指数等概念,对相对湿润度指数进行应用上的演化,解决了干旱演变过程中存在的前期土壤水分盈亏的累积影响问题,实现了县域内农业干旱状况的综合评定,并突破单种作物生长季的局限,实现了农业干旱的周年监测。通过对山东省114个测墒站2008年2月28日—12月8日人工测墒与区域综合相对湿润度指数的干旱等级对比,3048组有效数据中,2012组数据吻合,总吻合率为66%,其中,黄河、东平湖、微山湖灌溉区及鲁西北大部吻合率在50%以下;中东部地区多在70%以上;从全年情况来看,春季吻合率较低,夏季吻合率较高。  相似文献   

8.
Under the threat of global warming it is important to determine the impact that future changes in climate may have on the environment and to what extent any adverse effects can be mitigated. In this study we assessed the impact that climate change scenarios may have on soil carbon stocks in Canada and examined the potential for agricultural management practices to improve or maintain soil quality. Historical weather data from 1951 to 2001 indicated that semi-arid soils in western Canada have become warmer and dryer and air temperatures have increased during the spring and winter months. Results from the Canadian Center for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model (CGCM1,2) under two climate change forcing scenarios also indicated that future temperatures would increase more in the spring and winter. Precipitation increased significantly under the IPCC IS92a scenario and agreed with historical trends in eastern Canada whereas the IPCC SRES B2 scenario indicated very little change in precipitation and better matched historical trends in western Canada. The Century model was used to examine the influence of climate change on agricultural soil carbon (C) stocks in Canada. Relative to simulations using historical weather data, model results under the SRES B2 climate scenario indicated that agricultural soils would lose 160 Tg of carbon by 2099 and under the IS92a scenario would lose 53 Tg C. Carbon was still lost from soils in humid climatic regions even though C inputs from crops increased by 10–13%. Carbon factors associated with changes in management practices were also estimated under both climate change scenarios. There was little difference in factors associated with conversion from conventional to no-till agriculture, while carbon factors associated with the conversion of annual crops to perennial grass were lower than for historical data in semi-arid soils because water stress hampered crop production but were higher in humid soils.  相似文献   

9.
全球增暖背景下中国干湿气候带变化规律研究   总被引:8,自引:2,他引:6  
用中国区域561个气象站1961—2010年的逐日气象资料,计算了多时间尺度的湿润指数。用ArcGIS软件平台对站点的降水量和湿润指数进行反距离加权插值,得到其空间分布图,进而分别从全球气候变暖背景下和年代际两个角度分析了湿润指数与干湿气候带界线的变化特征。结果表明:在气候变暖背景下,新疆的极干旱区范围缩小;内蒙东部半干旱区东伸增大,西部干旱区南移扩大;山东半湿润区南移扩大;陕西半干旱区加大,湿润区缩小。从年代际变化而言,湿润指数和干湿气候带界线分布有明显的区域特征。东北地区总体呈现干湿交替特征;1970s起,西北地区总体趋湿;华北东南部持续趋干;新疆南部(极干旱区)持续趋湿;南方地区在2000s四川南部和贵州中南部趋干,出现部分半干旱区。另外,根据中国农业区划方案,分别计算7个一级农业类型区湿润指数。发现7大农业区50 a来湿润指数都呈下降趋势(青藏区除外),尤其西南地区在2000s湿润指数下降最为显著,其主要原因是2001年以来该地区潜在蒸散增加和降水偏少造成的。  相似文献   

10.
Summary Residues from crops left on the soil surface have an impact on the microclimate, primarily temperature, within the soil and the atmosphere; but, the impact on the biological system is largely unknown. Residue is assumed to have a positive impact on the biological system in the soil and a negative impact on crop growth. This report investigates the effect of standing residue on the microclimate surrounding a cotton (Gossypium hirsutum L.) crop in a semi-arid environment and the effect of flat residue on the seasonal soil temperature and soil water regimes in a humid climate with a corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] production system. A study was conducted during 1987 and 1988 in a semi-arid climate at Lubbock, Texas using standing wheat stubble to shelter cotton from wind. In this study soil water, microclimatic variables, and plant growth were measured within standing stubble and bare soil during the early vegetative growth period. Air temperatures were warmer at night within the standing residue and the air more humid throughout the day. This led to a reduction in the soil water evaporation rate and an increase in the water use efficiency of the cotton plant within the stubble. Studies on corn residue with continuous corn and corn-soybean rotations with no-till, chiselplow, and moldboard plow tillage practices in central Iowa showed that the average soil temperatures in the upper soil profile were not affected by the presence of flat residue after tillage. Diurnal temperature ranges were most affected by the residue throughout the year. The largest effect of the residue on soil temperature was in the fall after harvest when no-till fields cooled more slowly than tilled fields. In the spring, surface residue decreased the soil water evaporation rate and increased the soil water storage within the soil profile covered with residue. In years with below normal rainfall, the additional stored soil water due to the surface residue was used by the plant to maintain transpiration rates at optimal levels during the early vegetative growth period. The biological implications of crop residue on the soil surface can be more positive than negative and increasing our understanding of the physical environment and biological system interactions will lead to improved resource management.Contribution from the United States Department of Agriculture, Agriculture Research Service.With 6 Figures  相似文献   

11.
“天气-风障-产量”是一个复杂巨系统, 若想通过该系统取得最佳效益, 必须对林带结构做出优化决策。该文论述了马尔可夫决策过程 (MDP) 在该决策中的应用问题。利用在沈阳市康平县对农田防护林带考察中所取得的资料, 依据概率论的基本原理, 计算出不同结构林带对玉米气象产量影响这一生态控制系统中有关状态的转移概率; 用MDP折扣模型计算出折扣率β=0.9条件下的最优策略并加以改进。结果表明:在当地天气、作物状况下所形成的复杂系统中, 采用透风系数为0.35的疏透结构农田防护林带具有最优决策结果。  相似文献   

12.
该系统适合地处干旱和半干旱的农业区。可以根据使用站点不同的特点,灵活选择产区和主要农作物。依照作物生长模式可以计算生长过程中的农作物根深、土壤有效相对含水量、叶面积指数,并根据农作物不同发育期灌溉指标计算出符合实际的灌溉日期和灌溉水量,对安排田间作物合理灌溉有较大帮助。  相似文献   

13.
陆面过程模型CoLM与区域气候模式RegCM3的耦合及初步评估   总被引:6,自引:2,他引:4  
郑婧  谢正辉  戴永久 《大气科学》2009,33(4):737-750
陆面过程通过影响陆面和大气之间物质(如,水分)和能量的交换影响气候, 其参数化方案对数值天气预报、全球及区域气候模拟有重要影响。本研究利用对生物物理、生物化学过程考虑更全面的陆面模式Common Land Model(CoLM) 替代区域气候模式RegCM3原有的陆面模式BATS, 发展了耦合区域气候模式C-RegCM3; 将其应用于东亚地区典型洪涝年份夏季气候模拟以进行评估, 结果表明新耦合的模式C-RegCM3能合理模拟大尺度环流场、近地表气温和降水的分布特征, 对西北半干旱地区降水模拟比RegCM3有所改进。通过利用区域气候模式C-RegCM3及RegCM3对地表能量和水文过程模拟结果的比较, 发现在半干旱、半湿润过渡区C-RegCM3模拟的潜热增大、感热减小; 模拟的地表吸收太阳辐射差异较明显的地区位于模式模拟的主要雨区; C-RegCM3在上述过渡区模拟的夏季地表土壤湿度比RegCM3偏干, 这与它在过渡区降水模拟偏少、蒸散发模拟偏大相对应, 体现了该模式在半干旱、半湿润过渡带模拟出比RegCM3更明显的局地土壤湿度-降水-蒸散发之间的正反馈作用。  相似文献   

14.
A numerical simulation of boundary-layer flows near shelterbelts   总被引:9,自引:6,他引:9  
We have developed a shelterbelt boundary-layer numerical model to study the patterns and dynamic processes relating to flow interaction with shelterbelts. The model simulates characteristics of all three zones of airflow passing over and through shelterbelts: the windward windspeed-reduction zone, the overspeeding zone above the shelterbelt, and the leeward windspeed-reduction zone. Locations of the maximum windspeed reduction and recirculation zone, as well as the leeward windspeed-recovery rate are well simulated by the model. Where comparisons with field measurements and wind-tunnel experiments were possible, the model demonstrated good performance for flows over and through shelters ranging from almost completely open to almost solid. The dynamic pressure resulting from the convergence and divergence of the flow field alters the perturbation pressure field. The disturbed pressure controls not only the formation of the separated flow but also the location of maximum windspeed reduction, streamline curvature, speed-up over the shelterbelt, and leeward windspeed recovery rate. The interaction of pressure with the flow produces complex flow patterns, the characteristics of which are determined, to a great extent, by shelterbelt structure.  相似文献   

15.
The more humid, warmer weather pattern predicted for the future is expected to increase the windthrow risk of trees through reduced tree anchorage due to a decrease in soil freezing between late autumn and early spring, i.e during the most windy months of the year. In this context, the present study aimed at calculating how a potential increase of up to 4°C in mean annual temperature might modify the duration of soil frost and the depth of frozen soil in forests and consequently increase the risk of windthrow. The risk was evaluated by combining the simulated critical windspeeds needed to uproot Scots pines (Pinus sylvestris L.) under unfrozen soil conditions with the possible change in the frequency of these winds during the unfrozen period. The evaluation of the impacts of elevated temperature on the frequency of these winds at times of unfrozen and frozen soil conditions was based on monthly wind speed statistics for the years 1961–1990 (Meteorological Yearbooks of Finland, 1961–1990). Frost simulations in a Scots pine stand growing on a moraine sandy soil (height 20 m, stand density 800 stems ha–1) showed that the duration of soil frost will decrease from 4–5 months to 2–3 months per year in southern Finland and from 5–6 months to 4–5 months in northern Finland given a temperature elevation of 4°C. In addition, it could decrease substantially more in the deeper soil layers (40–60 cm) than near the surface (0–20 cm), particularly in southern Finland. Consequently, tree anchorage may lose much of the additional support gained at present from the frozen soil in winter, making Scots pines more liable to windthrow during winter and spring storms. Critical wind-speed simulations showed mean winds of 11–15 m s–1 to be enough to uproot Scots pines under unfrozen soil conditions, i.e. especially slender trees with a high height to breast height diameter ratio (taper of 1:120 and 1:100). In the future, as many as 80% of these mean winds of 11–15 m s–1 would occur during months when the soil is unfrozen in southern Finland, whereas the corresponding proportion at present is about 55%. In northern Finland, the percentage is 40% today and is expected to be 50% in the future. Thus, as the strongest winds usually occur between late autumn and early spring, climate change could increase the loss of standing timber through windthrow, especially in southern Finland.  相似文献   

16.
一种改进的土壤水分平衡模式   总被引:7,自引:0,他引:7  
申双和  李胜利 《气象》1998,24(6):17-21
将美国学者,J.T.Ritchie等研制的作物生长模拟模式(CERES-小麦模式)中的土壤水分平衡子模式应用于我国半干旱地区甘肃省西峰市农业气象试验站固定地块麦地土壤水分的模拟,对原有模式中潜在蒸散、地表蒸发和作物蒸腾加以修正,同时,为增强模式的应用性能,引入一种由作物生育期来估算作物根系最大深度和土壤各层相对根密度的方法。改进后的土壤水分平衡模式取得较好的应用效果,为旱地农田土壤水分管理提供了一  相似文献   

17.
Effects of Crop Growth and Development on Land Surface Fluxes   总被引:2,自引:0,他引:2  
In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes underwent substantial changes when the leaf area index was changed from 0 to 6 m2 m-2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluation of the effects of crop growth and development on surface fluxes in China, two numerical experiments were conducted over continental China: one by BATS CERES and one by the original BATS. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crops in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, and root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulations and observations proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes.  相似文献   

18.
The data of instrumental observations of water temperature at autonomous bottom stations in the coastal zone of Sakhalin Island (the depth is 3-17 m) mainly along the southeastern coast are analyzed. The cases of sharp (by 15°C per day) temperature drop are detected. They are caused by the strengthening of southern and southwestern winds typtcal of summer and betng the offshore winds which favor the lift of cold water to the surface. This phenomenon is observed every year but its intensity varies depending on the frequency of offshore winds. Along the southwestern coast of Sakhalin, where the offshore effect is induced by northern, northeastern, and eastern winds characterized by the low frequency of occurrence, water temperature drops are rarer and shorter (3-5 days) but rather sharp. The occurrence of cold water (its temperature is sometimes negative) in the shallow coastal zone may lead to the mass mortality of juvenile salmon after its downstream migration in spawning rivers, may impede the approaches of humpback salmon and negatively affect its catch.  相似文献   

19.
Based on numerical experiments using the NCAR CAM3-CLM3 models, this paper examines the impact of soil moisture, vegetation, and sea surface temperature (SST) on the inter-annual variability of climate over land. For each element, two experiments are carried out, with the inter-annual variability preserved in one experiment and eliminated in the other. Differences in the standard deviation of the precipitation and air temperature at the inter-annual time scale are used to quantify the impacts from soil moisture dynamics, vegetation dynamics, and oceanic forcing. The impact of oceanic forcing is mainly limited to the Tropics, with the strongest signal in the equatorial zone, and moisture convergence is the key linkage between SST forcing and tropical precipitation. Soil moisture plays a significant role in climate variability during the rainy seasons of all semi-arid regions (which is consistent with many previous studies), and during the dry seasons of the humid Amazon. Evapotranspiration is identified as the main mechanism linking precipitation variability to soil moisture. Amazon is the only region where vegetation dynamics has a significant influence on precipitation variability. However, the impact of vegetation dynamics on temperature is strong over the US Great Plains in all four seasons and in the Amazon region during the dry and dry-to-wet transition seasons.  相似文献   

20.
利用加密观测资料详细分析了登陆并穿过浙江省的9015号台风所造成的风雨分布及其变化与台风周围的一些中尺度特征以及地形作用的关系。分析表明:台风登陆后气压眼与风眼存在偏离,这种偏离状况是与风雨强度相对应的。此外,在台风登陆后不久,由于入流增强,中心眼区范围内降雨会突然增强;台风造成的雨区成带状分布,带宽约40-60km,间隔为30-100km,雨带内主要雨团相对于台风中心的移动轨迹大都呈顺时针旋转,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号